Giai phương trình (x^3+x^2)+(x^2+x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>4(2x-1)-12x=3(x+3)+24
=>8x-4-12x=3x+9+24
=>-4x-4=3x+33
=>-7x=37
=>x=-37/7
b: =>(x-2)(x+2+x-9)=0
=>(2x-7)(x-2)=0
=>x=2 hoặc x=7/2
c: =>(x-1)(x+3)-x+3=3x+3
=>x^2+2x-3-x+3=3x+3
=>x^2+x-3x-3=0
=>x^2-2x-3=0
=>(x-3)(x+1)=0
=>x=-1
ĐKXĐ:\(x\ne\pm1\)
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3x-2}{1-x^2}=0\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{x^2+3x-2}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{x^2+2x+1-x^2+2x-1-x^2-3x+2}{\left(x+1\right)\left(x-1\right)}=0\\ \Rightarrow-x^2+x+2=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x^2-2x\right)+\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)-\left[\left(x-1\right)\left(x-1\right)\right]-\left(x^2+3x-2\right)}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2-\left(x^2+3x-2\right)=0\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1-x^2-3x+2=0\)
\(\Leftrightarrow-x^2-x+2=0\)
\(\Leftrightarrow-x^2+x-2x+2=0\)
\(\Leftrightarrow-x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Bài làm:
a) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-2;-1;0;1\right\}\)
b) Nhận thấy \(\left(x-1\right)^4+\left(x-2\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^4=-\left(x-2\right)^4\)
Mà \(\hept{\begin{cases}\left(x-1\right)^4\ge0\\-\left(x-2\right)^4\le0\end{cases}\left(\forall x\right)}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^4=0\\-\left(x-2\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\) (vô lý)
=> không tồn tại x thỏa mãn PT
a) x( x - 1 )( x + 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\), \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\), \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
b) ( x - 1 )4 + ( x - 2 )4 = 0
<=> ( x - 1 )4 = -( x - 2 )4
\(\hept{\begin{cases}\left(x-1\right)^4\ge0\\-\left(x-2\right)^4\le0\end{cases}\forall}x\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\)( mâu thuẫn )
=> Phương trình vô nghiệm
\(\frac{x-1}{2018}+\frac{x-2}{2017}+\frac{x-3}{2016}+\frac{x-2043}{8}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-1+\frac{x-2}{2017}-1+\frac{x-3}{2016}-1\)\(+\frac{x-2043}{8}+3=0\)
\(\Leftrightarrow\)\(\frac{x-1}{2018}-\frac{2018}{2018}+\frac{x-2}{2017}-\frac{2017}{2017}\)\(+\frac{x-3}{2016}-\frac{2016}{2016}+\frac{x-2043}{8}+\frac{24}{8}=0\)
\(\Leftrightarrow\)\(\frac{x-2019}{2018}+\frac{x-2019}{2017}+\frac{x-2019}{2016}\)\(+\frac{x-2019}{8}=0\)
\(\Leftrightarrow\)\(\left(x-2019\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow\)\(x-2019=0\) ( Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{8}\ne0\))
\(\Leftrightarrow\) \(x=2019\)
Vậy phương trình có nghiệm là : \(x=2019\)
\(x^3+x^2+x^2+x=0\)
\(\Rightarrow x.\left(x^2+2x+1\right)=0\)
TH1: x=0
TH2: \(x^2+2x+1=0\)
\(x^2+2x=-1\)
\(x.\left(x+2\right)=-1\)
Mà \(Ư\left(-1\right)=\left\{-1;1\right\}\)
x<x+2 => x=-1; x+2=1
Ta đều có x=-1
Vậy \(x\in\left\{-1;0\right\}\)
(x^3+x^2)+(x^2+x)=0
<=>x2.(x+1)+x.(x+1)=0
<=>x.(x+1)(x+1)=0
<=>x=0 hoặc x=-1