Chứng Minh: Nếu x,y là các số tự nhiên sao cho 3x-y+1 và 2x+3y-1 đều chia hết cho 7 thì x,y chia cho 7 đều dư 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\left\{\begin{matrix} 3x-y+1\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3(3x-y+1)\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\)
\(\Rightarrow 3(3x-y+1)+(2x+3y-1)\vdots 7\)
\(\Rightarrow 11x+2\vdots 7\)
\(\Rightarrow 11(x-3)+35\vdots 7\Rightarrow 11(x-3)\vdots 7\Rightarrow x-3\vdots 7\)
\(\Rightarrow x\) chia 7 dư $3$
Đặt $x=7k+3$ thì:
\(3x-y+1\vdots 7\)
\(\Rightarrow 3(7k+3)-y+1\vdots 7\)
\(\Rightarrow 21k+7+3-y\vdots 7\Rightarrow 3-y\vdots 7\)
\(\Rightarrow y-3\vdots 7\) hay $y$ chia $7$ dư $3$
Vậy $x,y$ chia $7$ đều dư $3$
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)