K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

\(\Omega\) lấy 3 viên bi

\(\left|\Omega\right|=C^3_{12}\)

gọi A" 3 viên lấy ra màu đỏ"

\(\left|A\right|=C^3_7\)

Suy ra 

\(P\left(A\right)=\frac{C^3_7}{C^3_{12}}\)

7 tháng 12 2018

Đáp án là C

3 tháng 11 2019

Đáp án C

Để xác định biến cố, ta xét các trường hợp sau:

+) 2 bi xanh và 1 bi đỏ, suy ra có C 5 2 . C 4 1 = 40  cách.

+) 3 bi xanh và 0 bi đỏ, suy ra có C 5 3 = 10  cách.

Suy ra xác suất cần tính là  P = 40 + 10 C 9 3 = 25 42

NV
22 tháng 12 2022

Không gian mẫu: \(C_{15}^4\)

a.

Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)

Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)

b.

Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách

Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)

Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)

c.

Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)

Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)

Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)

25 tháng 9 2018

Đáp án C

Xác suất cần tính là C 7 1 C 3 1 C 10 2 = 7 15

24 tháng 7 2019

Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.

Trong hộp có tất cả:  5+ 15 + 35 = 55 viên bi

- Số phần tử của không gian mẫu:  Ω =   C 55 7 .

- A ¯  là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.

=> n A ¯ = C 20 7 .  

Vì A và A ¯  là  hai biến cố đối nên:  n A = Ω − n A ¯ = C 55 7 − C 20 7 .

Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là  P A = C 55 7 − C 20 7 C 55 7 .

Chọn đáp án B.