K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

ta có: 20=21-1=x-1

B=x6-20x5-20x4-20x3-20x2-20x+3 

= x6-(x-1)x5-(x-1)x4-(x-1)x3-(x-1)x2-(x-1)x+3 

=x6-x6+x5-x5+x4-x4+x3-x3+x2-x2+x+3

=x+3

=21+3

=24

22 tháng 8 2017

Ta có:P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy

Đặt S=xy=x(201−x)

Dễ có:1≤x≤200

S=200−(x−1)(x−200)≥0⇒Smin=200

Không mất tính TQ giả sử x≤y⇒x≤100

23 tháng 6 2021

20x2+20x3+20x4+20 

= 200

20 x 2 + 20 x 3 + 20 x 4 +20

=40 + 60 + 80 + 20

=100+80+20

=180+20

=200

13 tháng 5 2022

a) 20x4+20x3+20x3

= 20 x ( 4+3 + 3)

= 20 x10

= 200

 b) (6x9-54)x(25 +26+27+.........41+42)

= 0 x (25 +26+27+.........41+42)

= 0 

13 tháng 5 2022

20x4+20x3+20x3

= 20 x ( 4+3 + 3)

= 20 x10

= 200

 b) (6x9-54)x(25 +26+27+.........41+42)

= 0 x (25 +26+27+.........41+42)

= 0 

27 tháng 7 2021

Ta có \(x=21\Rightarrow x-1=20\)

biểu thức B có dạng :

 \(B=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)

\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+3=x+3\)

Vậy \(B=21+3=24\)

11 tháng 8 2020

\(B=x^6-20x^5-20x^4-20x^3-2x^2-20x+3\)

\(B=x^6-21x^5+x^5-21x^4+x^4-21x^3+x^3-21x^2+19x^2-20x+3\)

\(B=x^5\left(x-21\right)+x^4\left(x-21\right)+x^3\left(x-21\right)+x^2\left(x-21\right)+19x^2-20x+3\)

Do \(x=21\)    nên \(\left(x-21\right)\left(x^5+x^4+x^3+x^2\right)=0\)

=> \(B=19.21^2-20.21+3=7962\)

VẬY \(B=7962\)

5 tháng 9 2017

a) Có x = 99 => x+1 = 100

A = x5 - (x+1)x4 + (x+1)x3 + (x+1)x2 + (x+1)x - 9

= x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - 9

= x - 9

=> A = 90

b) Chữa đề: x6 - 20x5 - 20x4 - 20x3 - 20x2 - 20x + 3

Có: x = 21 => x-1 = 20

B = x6 - (x-1)x5 - (x-1)x4 - (x-1)x3 - (x-1)x2 - (x-1)x + 3

= x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x + 3

= x + 3

=> B = 24

23 tháng 7 2019

a) Vì\(x=99\Rightarrow x+1=100\)

Thay x+1=100 vào biểu thức A ta được :

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)

\(=x+9\)

\(=99+9\)

\(=108\)

b) Tương tự

23 tháng 7 2019

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)

\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)

\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)

\(\Rightarrow A=0-0+0+01-9=-9\)