Cho hình bình hành ABCD. Các điểm E,F thuộc đường chéo AC sao cho AF=EF=FC. M là giao điểm của BF và CD, N là giao điểm của DE và AB. chứng minh:
a. M, N thứ tự là trung điểm của CD và AB.
b. EMFN là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ADC = tam giác CBA
=> Góc ACB = Góc CAD
=> tam giác AED = tam giác CFB
=>Góc BFC = Góc DEA
=> DN // BM ( vì BFC và DEA ở vị trí so le ngoài)
=> EN // BM ( E thuộc DN)
Tam giác AMB có EA = EF (gt) ; EN // BM (c/m trên)
=> EN là đường trung bình
=> N là trung điểm của AB
Tương tự => FM là đường trung bình tam giác ECD
=> M là trung điểm của CD
do ABCD là hình bình hành
=>AD//BC
=>\(\widehat{DAC}=\widehat{BCA}\)(so le)
Xét \(\Delta ADE\) và \(\Delta CBF\) có:
AD=BC( do ABCD là hình bình hành)
\(\widehat{DAC}=\widehat{BCA}\)(cmt)
AE=CF(gt)
=>\(\Delta ADE\)=\(\Delta CBF\)(c.g.c)
=>\(\widehat{AED}=\widehat{CFB}\)
Ta có:
\(\widehat{AED}=\widehat{NEC}(đối dỉnh) \)
\(\widehat{BFC}=\widehat{AFM}(đối đỉnh)\)
=>\(\widehat{NEC}=\widehat{AFM}\)
Mà hai góc này ở vị trí so le trong
=>DN//MB
=>EN//BF(1)
Lại có:
AE=EF(2)
=>AN=NB=> N là trung điểm của AB
MB//DN=>MF//DE(3)
Lại có: CF=EF(4)
Từ (3),(4)
=>CM=MD
=> M là trung điểm của CD
làm đc mỗi câu b :))
AEFC là hình bình hành ( tự cm nhá :) )
=> đường chéo AC giao đường chéo EF tại trung điểm của EF
câu a => đường chéo MN giao đường chéo EF tại trung điểm của EF
=> ĐPCM
câu b thui, câu a lằng nhằng quá lười nghĩ thông cảm nhé
Bạn tham khảo bài này nhé :
a) Tam giác ADC = tam giác CBA
=> Góc ACB = Góc CAD
=> tam giác AED = tam giác CFB
=>Góc BFC = Góc DEA
=> DN // BM ( vì BFC và DEA ở vị trí so le ngoài)
=> EN // BM ( E thuộc DN)
Tam giác AMB có EA = EF (gt) ; EN // BM (c/m trên)
=> EN là đường trung bình
=> N là trung điểm của AB
Tương tự => FM là đường trung bình tam giác ECD
=> M là trung điểm của CD
giải câu b luôn đi bạn