K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2014

Gọi d là ước chung lớn nhất của n+1 và 3n+4.

Ta có: n+1 chia hết cho d ; 3n+4 chia hết cho d.

=> (3n+4) - (n+1) chia hết cho d

     =(n+n+n+4) - (n+1)

      =2n+3 chia hết cho d

Ta có: 2n+3 chia hết cho d và n+1 chia hết cho d

=> (2n+3) - (n+1) chia hết cho d

=    (n+n+3) - (n+1)

=    ( n+2) chia hết cho d

Ta có: (n+2) chia hết cho d và  (n+1) chia hết cho d

=> (n+2) - (n+1) chia hết cho d

= 1 chia hết cho d.

=> d=1

===============> n+1 và 3n+4 là hai số nguyên tố cùng nhau.

19 tháng 12 2014

                                       Cách hồi nãy cũng hơi dài dòng! Còn 1 cách nữa:

Gọi d là ứơc chung của hai số n+1 và 3n+4.

Ta có: 3n+4 chia hết cho d và n+1 cũng chia hết cho d

=> (3n+4) - (n+1) chia hết cho d

=  [1.(3n+4)]  -  [3.(n+1)]

=  (3n+4) - (3n+3)

=1  chia hết cho d

=> d=1

===============> n+1 và 3n+4 là hai số nguyên tố cùng nhau

 

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

25 tháng 11 2017

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)

=> 2n+1 chia hết cho a; 3n+1 chia hết cho a

=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a

=> 6n+3 chia hết cho a; 6n+2 chia hết cho a

=> (6n+3)-(6n+2) chia hết cho a

=> (6n-6n)+(3-2) chia hết cho a

=> 1 chia hết cho a

=> a=1 

=> UWCLN(2n+1;3n+1)=1

=> 2n+1 và 3n+1 nguyên tố cùng nhau

Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

12 tháng 12 2017

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)
=> 2n+1 chia hết cho a; 3n+1 chia hết cho a
=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a
=> 6n+3 chia hết cho a; 6n+2 chia hết cho a
=> (6n+3)-(6n+2) chia hết cho a
=> (6n-6n)+(3-2) chia hết cho a
=> 1 chia hết cho a
=> a=1
=> UWCLN(2n+1;3n+1)=1
=> 2n+1 và 3n+1 nguyên tố cùng nhau
Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

chúc bn hok tốt @_@

2 tháng 12 2015

gọi d là UCLN ( 3n+5, 2n+3 )

=>3n+5 chia hết cho d

=>2n+3 chia hết cho d

=>2.(3n+5) chia hết cho d

=>3.(2n+3) chia hết cho d

=>6n+10 chia hết cho d

=>6n+9 chia hết cho d

=>6n+10-(6n+9) = d

=>6n+10-6n-9 =d

=>      1         = d

=> 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

2 tháng 12 2015

Gọi n thuộc uc(3n+5,2n+3)

Ta có

3n+5:n và 2n+3:n

=>2.(3n+5):n và 3.(2n+3)

=>6n+10:n và 6n+9:n

=>1:n 

=.n=1

Vậy 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

15 tháng 1 2023


 

Gọi n thuộc uc(3n+5,2n+3)

Ta có

3n+5:n và 2n+3:n

=>2.(3n+5):n và 3.(2n+3)

=>6n+10:n và 6n+9:n

=>1:n 

=.n=1

Vậy 3n+5 và 2n+3 là hai số nguyên tố cùng nhau

18 tháng 12 2022

a: Gọi d=ƯCLN(n+3;n+2)

=>n+3-n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>n+2 và n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+3;3n+5)

=>6n+9-6n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>2n+3 và 3n+5là hai số nguyên tố cùng nhau

9 tháng 12 2015

Gọi  d = (A=3n+5 ;B=2n+3) => A ; B chia hết cho d

=> 2A -3B = 2(3n+5) - 3(2n+3) = 6n  +10 - 6n -9  =1 chia hết cho d

=> d =1

Vậy (A;B) =1

9 tháng 12 2015

chung mik la mih ngu nhatv 

25 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau