Cho M = 23xy. Hãy thay x,y bằng những số thích hợp để được một số có 4 chữ số khác nhau chia hết cho 2, chia 3 dư 1, và chia 5 dư 4. Tìm được bao nhiêu số M thỏa mãn yêu cầu đề bài?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\overline{23xy}\)
- M chia hết cho 2 =>\(y⋮2\) mà \(9\ge y\ge0\)
=>\(y\in\left\{0;2;4;6;8\right\}\).
- M chia 5 dư 4 =>\(\left(y-4\right)⋮5\) mà \(5\ge y-4\ge-4\)
=>\(y-4\in\left\{0;5\right\}\)
=>\(y\in\left\{4;9\right\}\).
=>\(y=4\)
-M chia 3 dư 1 =>\(\overline{23xy}-1⋮3\)
=>\(\overline{23x4}-1⋮3\)
=>\(\overline{23x3}⋮3\)
=>\(\left(2+3+x+3\right)⋮3\)
=>\(\left(8+x\right)⋮3\)
Mà \(9\ge x\ge0\)
=>\(x=1\) hay \(x=4\) hay \(x=7\).
-Vậy tìm được 3 số M thỏa mãn đề bài.
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
51xy chia 5 dư 4 =>y=4;9
mà 51xy chia hết cho 2 nên y=4
ta được 51x4
51x4 chia 3 dư 1
=>5+1+x+4 chia 3 dư
=>10+x chia 3 dư 1
=>x=3;6;9
vậy y=4 ; x thuộc {3;6;9}
Giải:
Vì số phải tìm chia cho 5 dư 3 nên chữ số tận cùng phải là 3 hoặc 8. Nhưng số đó phải chia hết cho 2 => ta chọn y = 8
Thay y vào ta có số : 702xl8 . Mà số đó phải chia hết 9 nên => 7 + 0 + 2 + x + l + 8 chia hết 9
=> x = 1 ; l = 0 hoặc x = 0 ; l = 1
Thay vào ta có số: 702108 hoặc 702018 . Nhưng vì số đó phải là số có 6 chữ số khác nhau => x = 1 ; l = 0 hoặc x = 0 ; l = 1 (loại)
=> x = 9 ; l = 1 hoặc x = 1 ; l =9 => Ta có số : 702198 hoặc 702918 (tm)
Vậy ta có 2 đáp số : ......tự ghi nhá!