K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 7 2021

Câu 3. 

Tam giác \(ABC\)vuông cân tại \(A\)nên \(\widehat{ACB}=45^o\).

Tam giác \(BCD\)vuông cân tại \(B\)nên \(\widehat{BCD}=45^o\).

\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=45^o+45^o=90^o\)

\(\Rightarrow AC\perp CD\)

mà \(AC\perp AB\)

nên \(AB//CD\)

suy ra \(ABCD\)là hình thang vuông. 

DD
20 tháng 7 2021

Câu 4. 

Kẻ \(BE\perp CD\)khi đó \(\widehat{BED}=90^o\).

Tứ giác \(ABED\)có \(4\)góc vuông nên là hình chữ nhật, mà \(AB=AD\)nên \(ABED\)là hình vuông. 

\(BE=DE=AB=2\left(cm\right)\)

\(EC=CD-DE=4-2=2\left(cm\right)\)

Suy ra tam giác \(BEC\)vuông cân tại  \(E\)

Suy ra \(\widehat{EBC}=\widehat{ECB}=45^o\)

\(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}=90^o+45^o=135^o\)

29 tháng 4 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì ΔABC vuông cân tại A nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lại có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ( tính chất tam giác vuông).

Suy ra: ∠ C 1 = 45 0

Vì ∆ BCD vuông cân tại B nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lại có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ( tính chất tam giác vuông).

Suy ra:  ∠ C 2 45 0

∠ (ACD) = ∠ C 1 +  ∠ C 2 =  45 0  +  45 0  =  90 0

⇒ AC ⊥ CD

Mà AC ⊥ AB (gt)

Suy ra: AB //CD

Vậy tứ giác ABCD là hình thang vuông.

10 tháng 1 2023

SBT TRAG BAO NHIÊU Ạ

 

1 tháng 9 2018

Hình thang

Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)

Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)

\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)

\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)

Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.

29 tháng 6 2017

Hình thang

21 tháng 7 2016

Bài 1:

a.

AB // CD

=> A + D = 1800 (2 góc trong cùng phía)

=> A = 1800 - D = 1800 - 540 = 1260

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 - C = 1800 - 1050 = 750

b.

AB // CD 

=> A + D = 1800 (2 góc trong cùng phía)

=> A = (1800 - 320) : 2 = 740

=> D = 1800 - 740 = 1060

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 : (1 + 2) . 2 = 1200

=> C = 1800 - 1200 = 600

Chúc bạn học tốt ^^

 

21 tháng 7 2016

mk vừa giả xong bài đó còn hai bài khai thì chưa biết bạn giải giúp mk đc ko ko đc cx chả sao dù j cx cảm ơn bạn

 

16 tháng 6 2019

#)Giải :

A B C D 1 2

Vì ∆ABC vuông cân tại A => \(\widehat{C_1}=45^o\)

∆BCD vuông cân tại B => \(\widehat{C_2}=45^o\)

Tứ giác ABCD có AB // CD và \(\widehat{A}=90^o\)=> Tứ giác ABCD là hình thang vuông

16 tháng 6 2019

Vì  ∆ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)

Vì ∆BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)

\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)

\(\Rightarrow AC\perp CD,\) \(AC\perp AB\left(gt\right)\)

\(\Rightarrow AB//CD\). Vậy tứ giác ABDC là hình thang vuông.

21 tháng 6 2016

Vì tam giác ABC vuông cân tại A (gt) nên góc ABC = góc ACB = 90 : 2 = 45 độ

Vì tam giác BCD vuông cân tại B (gt) nên góc BDC = góc BCD = 90 : 2 = 45 độ

Ta có: góc ACB + góc BCD = góc ACD = 45 độ + 45 độ = 90 độ

hay AC vuông góc DC. (1)

Vì tam giác ABC vuông cân tại A (gt) nên AC vuông góc AB (2)

Từ (1) và (2) suy ra DC // AB 

Do đó tứ giác ABCD là hình thang.

Bài 2: 

Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)

\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)

Xét tứ giác ACDB có 

CD//AB(cùng vuông góc với AC)

nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)

Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)

nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:
a. $BAC$ là tam giác vuông cân tại $A$

$\Rightarrow \widehat{BCA}=45^0$

$ACE$ là tam giác vuông cân tại $E$

$\Rightarrow \widehat{EAC}=45^0$

Do đó: $\widehat{BCA}=\widehat{EAC}$. Mà 2 góc này ở vị trí so le trong nên $AE\parallel BC$. Mà $\widehat{E}=90^0$ nên $AECB$ là hình thang vuông.

-----------------

Tính góc:

Hình thang vuông $AECB$ có $\widehat{E}=90^0$ đương nhiên $\widehat{C}=180^0-\widehat{E}=90^0$

$\widehat{ABC}=45^0$ (do $ABC$ vuông cân tại $A$)

$\widehat{BAE}=\widehhat{BAC}+\widehat{EAC}=90^0+45^0=135^0$

Tính cạnh:

Vì $ABC$ vuông cân tại $A$ nên $AB=AC$

Áp dụng định lý Pitago:

$AB^2+AC^2=BC^2=4$

$AB^2+AB^2=4$

$2AB^2=4\Rightarrow AB=\sqrt{2}$ (cm) 

$\Rightarrow AC=\sqrt{2}$ (cm)

Áp dụng định lý Pitago cho tam giác $ACE$ vuông cân tại $E$:

$AE^2+EC^2=AC^2=2$

$2AE^2=2\Rightarrow AE=1$ (cm)

$EC=AE=1$ (cm)

 

Vậy.........

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Hình vẽ:

11 tháng 8 2016

Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết,  dhnb:dấu hiệu nhận biết,   đ/n:định nghĩa,   cmt:chứng minh trên,   t/c: tính chất

3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.

         tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.

mà góc EAC và góc ACB ở vị trí so le trong.

Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.

b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.

Có: góc ABC= 45 độ (cmt).

tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.

Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với                                                                                 cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]

                                                                         => AD vông góc với BC. [đây là điều thứu hai suy ra được]

Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.

Xét  tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)

                                                                                       12   +  12    =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.

12 tháng 10 2021

QUỲNH LỚP 7C TRƯỜNG VÕ NGUYÊN GIẤP HẢ