Cho tam giác ABC,đường cao AH.Gọi D,E,M lần lượt là trung điểm của AB,AC,BC.chứng minh tứ giác DEMH là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Vì D trung điểm của AB (gt) và E trung điểm của AC (gt) nên DE là đường trung bình của tam giác ABC
⇒ DE // BC hay DE // HM
Suy ra tứ giác DEMH là hình thang
* Mà M trung điểm BC (gt) nên DM là đường trung bình của ∆ BAC
⇒ DM = 1/2 AC (tính chất đường trung bình của tam giác) (1)
* Trong tam giác vuông AHC có ∠ (AHC) = 90 0 . HE là đường trung tuyến ứng với cạnh huyền AC.
⇒ HE = 1/2 AC (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: DM = HE
Vậy hình thang DEMH là hình thang cân (vì có 2 đường chéo DM và EH bằng nhau).
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà E\(\in\)BC và \(BE=\dfrac{BC}{2}\)
nên MN//BE và MN=BE
Xét tứ giác BMNE có
MN//BE
MN=BE
Do đó: BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên HM=AM=MB
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên HN=AN=NC
Ta có: HM=AM
nên M nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: HN=AN
nên N nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra MN là đường trung trực của AH
b: Xét ΔBAC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung trực của ΔBAC
Suy ra: ME//AC và \(ME=\dfrac{AC}{2}\)
mà \(AN=\dfrac{AC}{2}\)
nên ME=AN
mà AN=HN
nên HN=ME
Xét tứ giác HMNE có
MN//HE
nên HMNE là hình thang
Hình thang HMNE có HN=ME
nên HMNE là hình thang cân
* Hình tự vẽ ạ :
a)
Ta có: M là trung điểm của BC => BM = MC mà BM = 3,5cm => MC = 3,5cm => BC = BM+MC = 3,5+3,5=7 (cm)
\(S_{\Delta ABC}=\dfrac{1}{2}AH.BC=19,25\left(cm^2\right)\)
b)
Tam giác ABC có:
+ E là trung điểm của AC (gt)
M là trung điểm của BC (gt)
=> ME là đường trung bình của tam giác ABC
=> ME // AB; ME = 1/2AB ( tính chất đường trung bình )
Ta lại có:
D là trung điểm của AB => AD = BD
mà ME=1/2AB (cmt)
=> ME=BD=AD
Tứ giác BDME có:
ME // BD ( ME // AB )
ME = BD (cmt)
=> tứ giác BDME là hình bình hành
Trả lời :
*Tự vẽ hình nhé b.
Xét \(\Delta ABC\)có : D là trung điểm AB, E là trung điểm AC
=> DE là đường trung bình \(\Delta ABC\)
=> DE // BC mà H, M \(\in BC\)=> DE // HM
=> DEMH là hình thang (1).
Xét \(\Delta ABC\)có : D là trung điểm AB, M là trung điểm BC
=> DM là đường trung bình \(\Delta ABC\)
=> \(DM=\frac{1}{2}AC\)(*).
\(\Delta\)vuông ACH có : \(\widehat{ACH}=90^o\), HE là trung tuyến
=> \(HE=\frac{1}{2}AC\)(**)
Từ (*) và (**) => DM = HE (2).
Từ (1) và (2) => DEMH là hình thang cân (đpcm).
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
b: Xét ΔABC có
M là trung điểm của AB
K là trung điểm của BC
Do đó: MK là đường trung bình của ΔBAC
Suy ra: MK//AC và \(MK=\dfrac{AC}{2}\)
mà N\(\in\)AC và \(AN=\dfrac{AC}{2}\)
nên AN//MK và AN=MK
Xét tứ giác AMKN có
AN//MK
AN=MK
Do đó: AMKN là hình bình hành
+)Trong tam giác ABC có : D là trung điểm của AB , E là trung điểm của AC
=> DE là đường trung bình => DE // BC hay DE // HM
=> tứ giác DEMH là hình thang (1)
mk chỉ cm đc 1 ý thui ak , sr ha ^^