Tìm n để \(A=\dfrac{\sqrt{n+1}}{\sqrt{n+1}-3}\) là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
Ý thứ hai: Từ giả thiết $p$ nguyên tố suy ra $b$ chẵn (vì $b$ phải chia hết cho $4$), ta đặt $b=2 c$ thì:
$p=\dfrac{c}{2} \sqrt{\dfrac{a-c}{b-c}} \Leftrightarrow \dfrac{4 p^2}{c^2}=\dfrac{a-c}{a+c}$.
Đặt $\dfrac{2 p}{c}=\dfrac{m}{n}$, với $(m, n)=1$ $\Rightarrow\left\{\begin{aligned} &a-c=k m^2 \\ &a+c=k n^2\\ \end{aligned}\right. \Rightarrow 2 c=k\left(n^2-m^2\right)$ và $4 p n=k m\left(n^2-m^2\right).$
+ Nếu $m$, $n$ cùng lẻ thì $4 p n=k m\left(n^2-m^2\right) \, \vdots \, 8 \Rightarrow p$ chẵn, tức là $p=2$.
+ Nếu $m$, $n$ không cùng lẻ thì $m$ chia $4$ dư $2$. (do $2p$ không là số chẵn không chia hết cho $4$ và $\dfrac{2 p}{c}$ là phân số tối giản). Khi đó $n$ là số lẻ nên $n^2-m^2$ là số lẻ nên không chia hết cho $4$ suy ra $k$ là số chia hết cho $2$.
Đặt $k=2 r$ ta có $2 p n=r m\left(n^2-m^2\right)$ mà $\left(n^2-m^2, n\right)=1 \Rightarrow r \, \vdots \, n$ đặt $r=n s$ ta có $2 p=s(n-m)(n+m) m$ do $n-m, n+m$ đều là các số lẻ nên $n+m=p$, $n-m=1$, suy ra $s, m \leq 2$ và $(m ; n)=(1 ; 2)$ hoặc $(2 ; 3)$.
Trong cả hai trường họp đều suy ra $p \leq 5$.
Với $p=5$ thì $m=2$, $n=3$, $s=1$, $r=3$, $k=6$, $c=15$, $b=30$, $a=39$.
Ý thứ nhất:
TH1: Nếu $p=3$, ta có $3^6-1=2^3 .7 .11 \, \vdots \, q^2$ hay $q^2 \, \big| \, 2^3 .7 .11$ nên $q=2$.
TH2: Nếu $p \neq 3$, ta có $p^2 \, \big| \, (q+1)\left(q^2-q+1\right)$.
Mà $\left(q+1, q^2-q+1\right)=(q+1,3)=1$ hoặc $3$. Suy ra hoặc $p^2 \, \big| \, q+1$ hoặc $p^2 \, \big| \, q^2-q+1$ nên $p < q$.
+ Nếu $q=p+1$ ta có $p=2$, $q=3$.
+ Nếu $q \geq p+2$.
Ta có $p^6-1=(p^3)^2-1=(p^3-1)(p^3+1)$ nên $q^2 \, \big| \, (p-1)(p+1).(p^2-p+1).(p^2+p+1)$.
Do $(q, p+1)=(q, p-1)=1$ và $\left(p^2-p+1, p^2+p+1\right)=\left(p^2+p+1,2 p\right)=1$ nên ta có hoặc $q^2 \, \big| \, p^2+p+1$ hoặc $q^2 \, \big| \, p^2-p+1$.
Mà $q \geq p+2$ nên $q^2 \geq(p+2)^2>p^2+p+1>p^2-p+1$.
Vậy $(p, q)=(2,3) ; \, (3,2)$.
a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\) \(\left(ĐKXĐ:x\ge0\right)\)
\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(\text{}\text{}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)
\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)
c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)
\(\Leftrightarrow x-\sqrt{x}+1>x\)
\(\Leftrightarrow x< 1\)
a: ĐKXĐ: \(x\ge0\)
Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
a: Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-4-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-1\)
\(=\dfrac{x-2\sqrt{x}-x+1}{x-1}\)
\(=\dfrac{-2\sqrt{x}+1}{x-1}\)
\(a,B=\dfrac{-\sqrt{x}-3+\sqrt{x}-3+x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\left(x\ge0;x\ne9\right)\\ B=\dfrac{x-2}{x-9}=\dfrac{x-9+7}{x-9}=1+\dfrac{7}{x-9}\in Z\\ \Leftrightarrow x-9\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{2;8;11;16\right\}\)
Vậy giá trị x thỏa đề là \(x=2\)
a: \(N=\dfrac{x+\sqrt{x}+1+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}+2}{x\sqrt{x}-1}\)
b: \(P=M\cdot N\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
Cái này mình chỉ rút gọn được P thôi, còn P nguyên thì mình xin lỗi bạn rất nhiều nha
\(\lim\limits\dfrac{\sqrt{\dfrac{an^3}{n^3}+\dfrac{n^2}{n^3}+\dfrac{1}{n^3}}-\sqrt{\dfrac{2n^3}{n^3}+\dfrac{n^2}{n^3}}}{\sqrt{\dfrac{4n^3}{n^3}+\dfrac{3n}{n^3}}}=\dfrac{\sqrt{a}-\sqrt{2}}{2}\le\sqrt{2}\)
\(\Rightarrow\sqrt{a}\le2\sqrt{2}+\sqrt{2}\Rightarrow-\left(2\sqrt{2}+\sqrt{2}\right)^2\le a\le\left(2\sqrt{2}+\sqrt{2}\right)^2\)
Dung ko nhi :D?
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
Đề thiếu bạn nhé. Có lẽ n phải là số nguyên.