K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 7 2021

\(y'=-x^2+2\left(m-2\right)x-m^2+3m\)

\(\Delta'=\left(m-2\right)^2-m^2+3m=4-m\)

TH1: \(\Delta'\le0\Rightarrow m\ge4\Rightarrow y'\le0\) ; \(\forall x\) hàm nghịch biến trên R (thỏa mãn)

TH2: \(m< 4\) , bài toán thỏa mãn khi:

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-\left(2m-4\right)+1\ge0\\2m-4< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+5\ge0\\m< 3\end{matrix}\right.\) \(\Rightarrow m\le\dfrac{5-\sqrt{5}}{2}\)

Vậy \(\left[{}\begin{matrix}m\ge4\\m\le\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

a: Để hàm số nghịch biến thì 1-2m<0

hay \(m>\dfrac{1}{2}\)

b: Để hàm số nghịch biến thì m-1<0

hay m<1

c: Để hàm số nghịch biến thì \(\dfrac{m-5}{m}>0\)

hay \(\left[{}\begin{matrix}m>5\\m< 0\end{matrix}\right.\)

y'=-1/3*3x^2+(m-2)*2x+(m-8)

=-x^2+(2m-4)x+m-8

Δ=(2m-4)^2-4*(-1)(m-8)

=4m^2-16m+16+4m-32=4m^2-12m-16

Để hs nghịch biến trên R thì m^2-3m-4<=0

=>-1<=m<=4

NV
31 tháng 8 2021

\(y'=mx^2-2\left(m+1\right)x+m-2\)

- Với \(m=0\) ko thỏa mãn

- Với \(m\ne0\) bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m+1\le0\end{matrix}\right.\) \(\Rightarrow m\le-\dfrac{1}{4}\)

1 tháng 9 2021

tại sao m=0 ko thoả mãn vậy ạ?

NV
17 tháng 7 2021

\(y'=mx^2+14mx+14\)

- Với \(m=0\Rightarrow y'=14>0\) hàm đồng biến trên R (ktm)

- Với \(m\ne0\) bài toán thỏa mãn khi với mọi \(x>1\) ta có:

\(mx^2+14mx+14\le0\)

\(\Leftrightarrow m\left(x^2+14x\right)\le-14\)

\(\Leftrightarrow m\le\dfrac{-14}{x^2+14}\)

\(\Leftrightarrow m\le\min\limits_{x>1}\dfrac{-14}{x^2+14}\)

Xét hàm \(f\left(x\right)=\dfrac{-14}{x^2+14}\) với \(x>1\)

\(f'\left(x\right)=\dfrac{28\left(x+7\right)}{\left(x^2+14x\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)>f\left(1\right)=-\dfrac{14}{15}\Rightarrow m\le-\dfrac{14}{15}\)