Giúp với mình cần gấp
Cho tú giác lồi ABCD có B+D=180 độ, CB=CD. Chứng minh AC là tia phân giác của BAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
Đáp án:
1/ Lấy E thuộc tia đối tia BA sao cho BE = AD. Ta có góc ABC + góc CBE = 180độ (kề bù). Mà góc ABC + góc CDA = 180độ (gt) ⇒ góc CBE = góc CDA (cùng = 180độ – góc ABC).
Xét ΔADC và ΔEBC có: + AD = BE (cách kẻ)
+ Góc CDA = góc CBE (c/m trên)
+ CD = BC (gt) ⇒ ΔADC = ΔEBC(c.g.c)
⇒ Góc DAC = góc BEC (1) và AC = CE. Do AC = EC ⇒ ΔACE cân tại C
⇒ góc CAE = góc CEA = góc CEB (2). Từ (1) và (2) ⇒ góc CAB = góc DAC ⇒ đpcm
Giải thích các bước giải:
Ta có: \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD)
\(\widehat{BAC}=\widehat{DAC}\)(AC là tia phân giác của \(\widehat{DAB}\))
Do đó: \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(Hai cạnh bên)
mà DA=BC(ABCD là hình thang cân)
nên CB=CD(đpcm)