Cho x+3y=5. Tìm giá trị nhỏ nhất của A=x2+y2+16y+2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
Thay \(x=5-3y\) vào A
\(A=\left(5-3y\right)^2+y^2+16y+2\left(5-3y\right)\)
.......
với x;y>=0 ta có:
\(A^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2=2x+1+2y+1+2\sqrt{\left(2x+1\right)\left(2y+1\right)}\)
\(=2\left(x+y\right)+2+\sqrt{4xy+2x+2y+1}=2\left(x+y\right)+2+\sqrt{4xy+2\left(x+y\right)+1}\)
\(2=2\left(x^2+y^2\right)=\left(1+1\right)\left(x^2+y^2\right)>=\left(x+y\right)^2\Rightarrow x+y< =\sqrt{2}\)(bđt bunhiacopxki)
\(2xy< =x^2+y^2=1\Rightarrow2\cdot2xy=4xy< =2\cdot1=2\)
\(\Rightarrow A^2=2\left(x+y\right)+2+2\sqrt{4xy+2\left(x+y\right)+1}< =2\sqrt{2}+2+2\sqrt{2+2\sqrt{2}+1}\)
\(=2\sqrt{2}+2+2\sqrt{\left(\sqrt{2}+1\right)^2}=2\sqrt{2}+2+2\left(\sqrt{2}+1\right)4\sqrt{2}+4\)
\(\Rightarrow A< =\sqrt{4\sqrt{2}+4}\)
dấu = xảy ra khi x=y=\(\sqrt{\frac{1}{2}}\)
vậy max A là \(\sqrt{4\sqrt{2}+4}\)khi \(x=y=\sqrt{\frac{1}{2}}\)