Cho ∆ABC vuông tại A, có BM là phân giác của ABC ̂. Trên cạnh BC lấy điểm H sao
cho BH = BA.
a) Chứng minh ∆ABM = ∆HBM, từ đó suy ra MH vuông góc với BC
b) Chứng minh ∆MAH cân
c) Kéo dài tia HM cắt tia BA tại F. Chứng minh ∆MAF = ∆MHC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t/giác ABM và t/giác HBM
có AB = BH (gt)
\(\widehat{ABM}=\widehat{HBM}\)(gt)
BM : chung
=> t/giác ABM = t/giác HBM (c.g.c)
b) Do t/giác ABM = t/giác HBM (cmt)
=> \(\widehat{BAM}=\widehat{BHM}=90^0\) (2 góc t/ứng)
=> HM \(\perp\)BC
c) Xét t/giác AMK và t/giác HMC
có \(\widehat{KAM}=\widehat{MHC}=90^0\)
AM = MJ (do t/giác ABM = t/giác HBM)
\(\widehat{AMK}=\widehat{HMC}\)(đối đỉnh)
=> t/giác ẠMK = t/giác HMC (g.c.g)
=> MK = MC (2 cạnh t/ứng)
=> t/giác KMC cân tại M
c) Ta có: BA + AK = BK
BH + HC = BC
mà AB = BH (gt); AK = HC(do t/giác ABM = t/giác HBM)
=> BK = BC => t/giác BKC cân tại B
=> \(\widehat{K}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (2)
Ta có: AB = BH(gt) => t/giác BAH cân tại B
=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\)(1)
Từ (1) và (2) => \(\widehat{K}=\widehat{BAH}\)
Mà 2 góc ở vị trí đồng vị => AH // KC
a: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có
BM chung
góc ABM=góc HBM
=>ΔBAM=ΔBHM
b: Xét ΔBDC có BA/BD=BH/BC
nên AH//DC