Chứng tỏ :
a, 52003 + 52002 + 52001 chia hết cho 31
b, 1 + 7 + 72 + 73 +... + 7101 chia hết cho 8
c, 439 + 440 + 441 chia hết cho 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)
c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{96}\right)⋮21\)
d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{35}\right)⋮8\)
\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19
ta có 10 ^ 28 + 8 chia hết cho 72 \(\Leftrightarrow\)10 ^ 28 + 8 chia hết cho 8 và 9
vì ba chữ số tận cùng chia hết nên 008 chia hết cho 8
vì tổng các chữ số cộng lại sẽ chia hết cho 9 nên 10 ^ 28 + 8 có tổng bằng 9 nên chia hết cho 9
Vậy 10^28+8 chia hết cho 72
(BÀI ĐÂY ĐÚNG VÌ THẦY GIÁO MÌNH GIẢI CHO MÌNH RỒI)
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28