Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AC. Gọi E, F, G theo thứ tự
là trung điểm của BD, BC, DC. Chứng minh rằng tứ giác AEFG là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Trong ∆ BDC, ta có:
E là trung điểm của BD (gt)
F là trung điểm của BC (gt)
Suy ra EF là đường trung bình của tam giác BCD
⇒ EF // DC hay EF // AG
Suy ra tứ giác AEFG là hình thang
G là trung điểm của DC (gt)
Nên FG là đường trung bình của tam giác BCD
⇒ FG // BD ⇒ ∠ G 1 = ∠ D 1 (đồng vị) (1)
* Trong tam giác ABD vuông tại A có AE là đường trung tuyến ứng với cạnh huyền BD
⇒ AE = ED = 1/2 BD (tính chất tam giác vuông)
Suy ra: tam giác AED cân tại E nên ∠ A 1 = ∠ D 1 (2)
Từ (1) và (2) suy ra: ∠ A 1 = ∠ G 1
Vậy hình thang AEFG là hình thang cân.
Link ảnh: https://imgur.com/a/fYvijKU
Vì EF là đường trung bình của tam giác BDC nên EF//DC
Do đó: AEFG là hình thang
Do FG là đường trung bình của tam giác BDC nên FG//BD
=> \(\widehat{G_1}=\widehat{D_1}\)(đồng vị)
Tam giác ABD vuông tại A có AE là trung tuyến nên \(AE=\frac{BD}{2}=ED\)
Do đó tam giác AED cân tại E => \(\widehat{A_1}=\widehat{D_1}\)
Từ đó: \(\widehat{G_1}=\widehat{A_1}\)
Hình thang AEFG có 2 góc kề 1 đáy bằng nhau nên là hình thang cân (đpcm)
Nguồn: Nguyễn Nhật Minh (h.vn)