K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2014

a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)

a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)

a=(-20)+3^4x(-20)+...+3^96x(-20)

a=(-20)+(3^4+3^8+...+3^96)

vi-20chia het cho 4=>achia hetcho 4

11 tháng 12 2016

vi A chia het cho 4 => A chia het cho 4 .(^,^)

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

13 tháng 3 2021

qua đúng

 

23 tháng 6 2023

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)

 

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ \Rightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\\ \Rightarrow A=\left(1+3+3^2\right)\left(3+3^4+...+3^{97}\right)\\ \Rightarrow A=13\left(3+3^4+...+3^{97}\right)⋮13\)

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ 3A-A=3^{99}-1\\ A=\dfrac{3^{99}-1}{2}\)

1 tháng 11 2021

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)

29 tháng 10 2021

\(A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13\)

\(=13\left(1+3^3+...+3^{96}\right)⋮13\)

29 tháng 10 2021

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ A=13\left(1+3^3+...+3^{96}\right)⋮13\)