K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAIH vuông tại I và ΔAID vuông tại I có

AI chung

IH=ID(gt)

Do đó: ΔAIH=ΔAID(hai cạnh góc vuông)

Suy ra: \(\widehat{IAH}=\widehat{IAD}\)(hai góc tương ứng)

Xét ΔAHK vuông tại K và ΔAEK vuông tại K có 

AK chung

HK=EK(gt)

Do đó: ΔAHK=ΔAEK(hai cạnh góc vuông)

Suy ra: \(\widehat{HAK}=\widehat{EAK}\)(hai góc tương ứng)

Ta có: \(\widehat{DAE}=\widehat{DAI}+\widehat{IAH}+\widehat{HAK}+\widehat{EAK}\)

\(=2\cdot\widehat{BAH}+2\cdot\widehat{CAH}\)

\(=2\cdot\widehat{BAC}\)(đpcm)

a: Xét ΔAEH có

AB vừa là đường cao, vừa là trung tuyến

=>ΔAEH cân tại A

=>AE=AH

b: Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAHF cân tại A

=>AH=AF=AE

31 tháng 7 2018

Hình tự vẽ nha : 

a) 

Ta có : HI \(\perp\)AB => AI \(\perp\)IH 

<=> AI là đường cao của tam giác AEH 

Mà : EI = IH ( gt ) 

=> tam giác AEH cân tại A 

=> AE = AH 

b) chứng minh tương tự như câu (a) 

24 tháng 2 2020

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

2 tháng 2 2020

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

a: Xét ΔAHE có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AB là phân giác của góc HAE và AE=AH

Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHF cân tại A

=>AC là phân giác của góc HAF và AH=AF

=>AE=AF

Xét ΔAHM và ΔAEM có

AH=AE
góc HAM=góc EAM

AM chung

=>ΔAHM=ΔAEM

=>góc AHM=góc AEM

Xét ΔAHN và ΔAFN có

AH=AF

góc HAN=góc FAN

AN chung

=>ΔAHN=ΔAFN

=>góc AHN=góc AFN

=>góc AHN=góc AHM

=>HA là phân giác của góc MHN

b: Xét ΔHEF có HI/HE=HK/HF

nên IK//EF

=>IK//MN

2 tháng 2 2020

https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!

6 tháng 6 2020

chotamgiacabc

gggfffffffffffffffffffffffffwuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuueahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg