Mn giúp em với ạ
Tìm giá trị lớn nhất của các biểu thức sau:
a) A=8a-8a2+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left|3x-2\right|+\left|3x-6\right|=\left|3x-2\right|+\left|6-3x\right|\ge\left|3x-2+6-3x\right|=4\)
\(M_{min}=4\) khi \(\dfrac{3}{2}\le x\le2\)
mình nghĩ đề là tìm n nguyên để biểu thức nhận giá trị nguyên nhé
Ta có : \(B=\dfrac{2n+1}{n-2}=\dfrac{2\left(n-2\right)+5}{n-2}=2+\dfrac{5}{n-2}\)
Vì 2 nguyên nên \(\dfrac{5}{n-2}\)cũng nguyên
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/
Bạn có thể tham khảo ở đây nha.
a)\(A=2x+1-x^2=2-\left(x^2-2x+1\right)=2-\left(x-1\right)^2\le2;\forall x\)
\(\Rightarrow A_{max}=2\Leftrightarrow x=1\)
b)\(B=4x-4x^2-5=-4-\left(4x^2-4x+1\right)=-4-\left(2x-1\right)^2\le-4;\forall x\)
\(\Rightarrow B_{max}=-4\Leftrightarrow x=\dfrac{1}{2}\)
a) `A=2x+1-x^2`
`=-(x^2-2x-1)`
`=-(x^2-2x+1)+2`
`=-(x-1)^2+2`
Có: `-(x-1)^2 <= forall x => -(x-1)^2+2 <=2`
`=> A_(max)=2 <=> x=1`
b) `B=4x-4x^2-5`
`=-(4x^2-4x+5)`
`=-(4x^2-4x+1)-4`
`=-[(2x)^2-2.2x.1+1^2]-4`
`=-(2x-1)^2+4`
`=> B_(max)=4 <=> x=1/2`
Lời giải:
a)
$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$
Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$
b)
$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$
$=7-(x^2-2x+1)-(4y^2+4y+1)$
$=7-(x-1)^2-(2y+1)^2$
Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$
\(A=-2\left(4a^2-4a+1\right)+5=5-2\left(2a-1\right)^2\le5\)
\(A_{max}=5\) khi \(a=\dfrac{1}{2}\)
a) Ta có: \(A=-8a^2+8a+3\)
\(=-8\left(a^2-a-\dfrac{3}{8}\right)\)
\(=-8\left(a^2-2\cdot a\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{5}{8}\right)\)
\(=-8\left(a-\dfrac{1}{2}\right)^2+5\le5\forall a\)
Dấu '=' xảy ra khi \(a=\dfrac{1}{2}\)