Cho góc AOB= 120 độ , vẽ các tia OC và OD nằm trong góc AOB sao cho OC vuông góc với OA và OD vuông góc với OB Tính góc COD ?Gọi Om và On lần lượt là 2 tia phân giác của góc AOD và BOC . Chứng minh Om vuông góc với On?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Vì tia OC nằm giữa tia OA và OB
=>AOC+COB=AOB
=>90 + COB = 120
=>COB=30 độ
tương tự tính được góc COB=30 độ
Mà AOD+DOC+COB=AOB
=>30+DOC+30=120
=>DOC=60 độ
b/ Vì Om là tia phân giác của AOC
=> O1=O2=AOD/2=30/2=15 độ
tương tự tính được góc O4=O5=15 độ
Mà góc mOn = O2+DOC+O4=15+60+15=90 độ
=> Om vuông góc với On
Ta có:
Góc BOD + góc DOC = 1200
=> góc DOC = 1200 - góc BOD = 120o - 90o = 30o
Góc AOC + góc COB = 120o
=> góc COB = 120o - góc AOC= 120o - 90o = 300
mà Góc BOC + góc COD + góc DOA = 120o
=> góc COD = 120o - ( góc BOC + góc DOA) = 1200 - 600 = 600
Ta có:
Góc BOC = Góc AOD
=> 1 / 2 BOC = 1 / 2 OD= 30 / 2 =15o
hay góc nOC = góc mOD = 15o
mà góc nOm= góc nOC +góc mOD + góc COD = 15o +150 +600 = 90o
hay nO vuông góc với mO.
a) Ta có : \(\hept{\begin{cases}\widehat{AOB}=90^o+\widehat{AOC}\\\widehat{COD}=90^o-\widehat{BOC}\end{cases}\Rightarrow\widehat{AOB}+\widehat{COD}=90^o+\widehat{AOC}+90^o-\widehat{BOC}=180^o\Rightarrowđpcm}\)
b) Ta có : \(\widehat{BOC}=\widehat{AOD}\) (cùng phụ nhau với \(\widehat{COD}\))
\(\Rightarrow\frac{\widehat{BOC}}{2}=\frac{\widehat{AOD}}{2}\Rightarrow\widehat{COM}=\widehat{AON}\) (phân giác On và On)
Lại có : \(\widehat{CON}+\widehat{AON}=90^o\Rightarrow\widehat{CON}+\widehat{COM}=90^o\) hay \(\widehat{mOn}=90^o\)
\(\Rightarrow Om\perp On\left(đpcm\right)\)
Ta có:
Góc BOD + góc DOC = 1200
=> góc DOC = 1200 - góc BOD = 120o - 90o = 30o
Góc AOC + góc COB = 120o
=> góc COB = 120o - góc AOC= 120o - 90o = 300
mà Góc BOC + góc COD + góc DOA = 120o
=> góc COD = 120o - ( góc BOC + góc DOA) = 1200 - 600 = 600
Ta có:
Góc BOC = Góc AOD
=> \(\frac{1}{2}BOC=\frac{1}{2}AOD=\frac{30}{2}=15^o\)
hay góc nOC = góc mOD = 15o
mà góc nOm= góc nOC +góc mOD + góc COD = 15o +150 +600 = 90o
hay nO vuông góc với mO.