Bài 2: Cho góc tù \(\widehat{xOy}\). Vẽ \(\widehat{xOt}\) và \(\widehat{yOz}\) là 2 góc kề bù với \(\widehat{xOy}\). Chứng minh \(\widehat{xOt}\) và \(\widehat{yOz}\) đối đỉnh.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì\(\widehat{xOy}\)và\(\widehat{yOz}\)là hai góc kề bù
Do đó\(\widehat{xOy}+\widehat{yOz}=180^o\)
Hay\(120^o+\widehat{yOz}=180^o\)
\(\Rightarrow\widehat{yOz}=180^o-120^o\)
\(\Rightarrow\widehat{yOz}=60^o\)
Vì tia Ot là tia phân giác của\(\widehat{yOz}\)
\(\Rightarrow\widehat{yOt}=\widehat{zOt}=\frac{\widehat{yOz}}{2}=\frac{60^o}{2}=30^o\)
Vì tia Ot nằm giữa \(\widehat{yOz}\)
Vì Oy nằm giữa\(\widehat{xOz}\)
Do đó tia Oy nằm giữa \(\widehat{xOt}\)
Nên\(\widehat{xOy}+\widehat{yOt}=\widehat{xOt}\)
Hay\(120^o+30^o=\widehat{xOt}\)
\(\Rightarrow\widehat{xOt}=150^o\)
Bài 2:
\(a.\)Vì \(\widehat{xOy}\)kề bù với góc \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(60^0+\widehat{yOz}=180^0\)
\(\Rightarrow\) \(\widehat{yOz}=180^0-60^0=120^0\)
\(b.\) Vì \(Ot\)là tia phân giác \(\widehat{xOy}\)\(\Rightarrow\)\(\widehat{tOy}=\frac{\widehat{xOy}}{2}=\frac{60^0}{2}=30^0\)
Vì \(Om\)là tia phân giác \(\widehat{yOz}\)\(\Rightarrow\)\(\widehat{yOm}=\frac{\widehat{yOz}}{2}=\frac{120^0}{2}=60^0\)
Vì \(Oy\)nằm giữa 2 tia \(Ot\)và \(Om\) \(\Rightarrow\) \(\widehat{tOy}+\widehat{yOm}=\widehat{tOm}\)
\(\Rightarrow\) \(30^0+60^0=\widehat{tOm}\)
\(\Rightarrow\) \(90^0=\widehat{tOm}\)
Vậy \(\widehat{tOm}\)là góc vuông
Bài 2: Vì góc xOy và yoz kề bù nên góc xOz= 180 độ Ta có : Góc xoy + góc yoz = xOz Hay : 60 độ + góc yoz = 180 độ góc yoz = 180 độ - 60 độ = 120 độ Vậy....
Đề bài sai nhé, bạn xem lại, vì đã có góc xOy thì không thể có chuyện Ox là tia phân giác của góc yOz được!
Đề sai nên sửa Ox thành Ox'
Vì Ot là tia phân giác của \(\widehat{xOy}\)
\(\Rightarrow\widehat{tOy}=\frac{1}{2}\widehat{xOy}\)
Vì Ox là tia phân giác của \(\widehat{yOz}\)
\(\Rightarrow\widehat{yOx'}=\frac{1}{2}\widehat{yOz}\)
Ta có :
\(\widehat{tOy}+\widehat{yOx'}=\frac{1}{2}\widehat{xOy}+\frac{1}{2}\widehat{yOz}\)
\(=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)\)
\(=\frac{1}{2}\times180^o\)
\(=90^o\)
hay \(\widehat{tOx}=90^o\)
xOy + tOx = 180o ( kề bù)
xOy + yOz = 180o ( kề bù)
mà xOy = xOy.
=> 2 góc này bằng nhau ( 2 góc cùng kề bù với góc thứ 3 thì bằng nhau).
=> 2 góc đối đỉnh.
like và tim bạn nhé
2 góc kề bù cùng với góc thứ 3 thì = ??????