Phân tích thành nhân tử ( bằng kĩ thuật bổ sung hằng đẳng thức ):
a. x^2 + x - 20
b.x^2 - x - 20
c.2x^2 - 3x - 2
d.3x^2 + x- 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + x - 12 = x2 - 3x + 4x - 12 = x(x - 3) + 4(x - 3) = (x - 3)(x + 4)
b) x2 - x - 12 = x2 + 3x - 4x - 12 = x(x + 3) - 4(x + 3) = (x + 3)(x - 4)
c) x2 - 9x + 20 = x2 - 4x - 5x + 20 = x(x - 4) - 5(x - 4) = (x - 4)(x - 5)
d) x2 + 9x + 20 = x2 + 4x + 5x + 20 = x(x + 4) + 5(x + 4) = (x + 4)(x + 5)
x2 + x -12 = x2 + 4x - 3x - 12 = x(x+4) - 3(x+4) = (x+4)(x-3)
\(x^2+x-12\)
\(=x^2+x+\frac{1}{4}-\frac{49}{4}\)
\(=\left(x+\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)
\(=\left(x+\frac{1}{2}-\frac{7}{2}\right)\left(x+\frac{1}{2}+\frac{7}{2}\right)\)
\(=\left(x-3\right)\left(x+4\right)\)
\(1,2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
\(2,4x^2-7x-2\)
\(=4x^2-8x+x-2\)
\(=4x\left(x-2\right)+x-2\)
\(\left(4x+1\right)\left(x-2\right)\)
c ) \(x^2-7x+12\)
\(=\left(x^2-3x\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-4\right)\left(x-3\right)\)
d ) \(x^2+7x+12\)
\(=\left(x^2+3x\right)+\left(4x+12\right)\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+4\right)\left(x+3\right)\)
a ) \(x^2-5x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
b )\(x^2+5x+6\)
\(=\left(x^2+2x\right)+\left(3x+6\right)\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
a.x^2 - 5x + 6
=x2-2x-3x+6
=x(x-2)-3(x-2)
=(x-3)(x-2)
b.x^2 + 5x + 6
=x2+3x+2x+6
=x(x+3)+2(x+3)
=(x+2)(x+3)
\(1,\)
\(x^2+x-12\)
\(=x^2-3x+4x-12\)
\(=x\left(x-3\right)+4\left(x-3\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
\(2,\)
\(x^2-9x+20\)
\(=x^2-4x-5x+20\)
\(=x\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-5\right)\left(x-4\right)\)
\(3,\)
\(x^2+x-20\)
\(=x^2-4x+5x-20\)
\(=x\left(x-4\right)+5\left(x-4\right)\)
\(=\left(x+5\right)\left(x-4\right)\)
a. \(2a^2+5ab-3b^2-7b-2\)
\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)
\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)
\(=\left(2a-b-2\right)\left(a+3b+1\right)\)
b. \(2x^2-7xy+x+3y^2-3y\)
\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)
\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
c. \(6x^2-xy-2y^2+3x-2y\)
\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)
\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y+1\right)\)
a) x2 + x - 20 = x2 - 4x + 5x - 20 = x(x - 4) + 5(x - 4) = (x - 4)(x + 5)
b) x2 - x - 20 = x2 + 4x - 5x - 20 = x(x + 4) - 5(x + 4) = (x + 4)(x - 5)
c) 2x2 - 3x - 2 = 2x2 - 4x + x - 2 = 2x(x - 2) + (x - 2) = (x - 2)(2x + 1)
d) 3x2 + x - 2 = 3x2 + 3x - 2x - 2 = 3x(x + 1) - 2(x + 1) = (x + 1)(3x - 2)