Chứng minh rằng M chia hết cho 5
\(M=4^0+4^1+4^2+4^3+.........+4^{49}+4^{50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+............+\left(3^{49}+3^{50}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+............+3^{49}\left(1+3\right)\)
\(=3.4+3^3.4+...............+3^{49}.4\)
\(=4\left(3+3^3+...........+3^{49}\right)⋮4\)
\(\Leftrightarrow A⋮4\left(đpcm\right)\)
b/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^9\right)+........+\left(+3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+........+3^{47}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+.........+3^{47}.40\)
\(=40\left(3+3^5+...........+3^{47}\right)⋮10\)
\(\Leftrightarrow A⋮10\left(đpcm\right)\)
Bạn lấy 1 và 3, 2 và 4, 5 và 7....48 và 50 cộng với nhau có tổng chia hết cho 10 Suy ra a chia hết cho 10
\(A=4+4^2+4^3+...+4^{48}+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+\left(4^5+4^6\right)+...+\left(4^{45}+4^{46}\right)+\left(4^{47}+4^{48}\right)+\left(4^{49}+4^{50}\right)\)
\(A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{45}\left(1+4\right)+4^{47}\left(1+4\right)+4^{49}\left(1+4\right)\)
\(A=4.5+4^3.5+4^5.3+...+4^{45}.5+4^{47}.5+4^{49}.5\)
\(A=5.\left(4+4^3+4^5+...+4^{45}+4^{47}+4^{49}\right)\)\(⋮\)\(5\)
\(\Rightarrow\)\(A⋮5\)
a)Cho A =4+42+43+....+448+449+450chia hết 5
A=(4+42)+(43+44)+.....+(447+449)+(449+450)
A=20+42.(4+42)+.....+446.(4+42)+448.(4+42)
A=20+42.20+.......+446.20+448.20
Vì 20 chia hết 5 suy ra 20+42.20+....+446.20+448.20chia hết cho 5
Vậy A chia hết cho 5
n
a)\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{49}.4\)
\(A=4.\left(3+3^3+...+3^{49}\right)⋮4\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{50}⋮4\left(đpcm\right)\)
b) \(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(A=120+...+3^{46}.\left(3+3^2+3^3+3^4\right)\)
\(A=120+...+3^{46}.120\)
\(A=120.\left(1+...+3^{46}\right)⋮10\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{49}+3^{50}⋮10\left(đpcm\right)\)
A=4+4^2+4^3+4^4+...+4^49+4^50
A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)
A=4.(1+4)+4^3.(1+4)+...+4^49.(1+4)
A=4.5+4^3.5+...+4^49.5
A=5.(4+4^3+...+4^49) chia het cho 5(vi 5 chia het cho 5)
=> A chia het cho 5
\(A=4+4^2+4^3+4^4+...+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)
\(A=4.5+4^3.5+...+4^{49}.5\)
\(A=5.\left(4+4^3+...+4^{49}\right)CHIA-HETCHO5\)
A=3+32 +33+34+...+349+350
=(3+32)+(32+33)+...(349+350)
=3.(1+3)+52.(1+3)+.....+349+(1+3)
=3.4+33.4+...+349.4
=4.(3+33+...+349)chia hết cho 4
=> A chia hết cho 4
M = 40+41+42+....+450
M = (40+41)+(42+43)+....+(449+450)
M = 1.(1+4)+42(1+4)+.....+449(1+4)
M = 1.5 + 42.5 +.......+449.5
M = 5.(1+42+.....+449) chia hết cho 5 (đpcm)
Đầu là mũ chẵn cộng mũ lẻ sao cuối lại mũ lẻ cộng mũ chẵn