Lúc 6 giờ một ô tô suất phát từ A đến B với vận tốc trung bình 40 km/h . Khi đến B , người lái xe làm nhiệm vụ giao nhận hàng trong 30 phút rồi cho xe quay trỏ về A với vận tốc trung bình 30 km/h . Tính quãng đường AB biết rằng ô tô về đến A lúc 10 giờ cùng ngày
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tgian cả đi cả về (không tính tgian giao hàng-nhận hàng)
\(10h-6h-30'=10-6-\dfrac{1}{2}=3,5h\)
gọi quãng đường AB là x(km)(x>0)
=>tgian o tô đi từ A tới B, từ B về A lần lượt là \(\dfrac{x}{40},\dfrac{x}{30}\left(h\right)\)
\(=>pt:\dfrac{x}{30}+\dfrac{x}{40}=3,5=>x=60\left(tm\right)\)
đổi \(30'=\dfrac{1}{2}h\)
gọi quãng đường AB là x(x>0)
=>thời gian cả đi cả về \(10-6=4h\)
\(=>\)thời gian đi: \(\dfrac{x}{40}\left(h\right)\)
\(=>\)thời gian về \(\dfrac{x}{30}+\dfrac{1}{2}\left(h\right)\)
\(=>\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{2}=4=>x=60km/h\)(tm)
ta có 30 phút =\(\dfrac{1}{2}h\)
Ô tô đi từ A đến B rồi từ B về A mất số thời gian là(không tính thời gian nhận hàng):
\(10-6-\dfrac{1}{2}=3,5h\)
Gọi x độ dài quãng đường AB (km)
theo đề bài ta có:
Thời gian đi từ A đến B là \(\dfrac{x}{40}\)
⇒Thời gian đi từ B đến A là\(\dfrac{x}{30}\)
quãng đường AB là :\(x=\dfrac{x}{40}+\dfrac{x}{30}=3,5=60km\)
30 phút = 1/2 h
thời gian cả đi lẫn về của ô tô là: 10-6-1/2 = 7/2 h
gọi x là độ dài quảng đường AB (x>0)
thời gian ô tô đi là x/40 (h)
thời gian ô tô về là x/30 (h)
ta có phương trình: x/40+ x/30 = 7/2
<=> 3x +4x = 420
<=> x=60 (nhận)
Vậy quảng đường AB dài 60km
Gọi độ dài quãng đường AB là x (x>0)(km)
Thời gian ô tô đi từ B đến A rồi quay lại A là: 10 - 6 = 4 (giờ)
Thời gian ô tô đi từ A đến B là: \(\frac{x}{40}\) (giờ)
Thời gian ô tô làm nhiệm vụ là: 30 phút = 1/2 giờ
Thời gian ô tô đi từ B về A là: \(\frac{x}{30}\) (giờ)
Tổng thời gian là 4 giờ nên ta có phương trình:
\(\frac{x}{30}+\frac{x}{40}+\frac{1}{2}=4\)
<=> \(\frac{4x+3x+60}{120}=\frac{480}{120}\)
<=> \(7x+60=480\)
<=> \(7x=480-60=420\)
<=> \(x=60\) ( thoả mãn điều kiện)
Vậy độ dài quãng đường AB là 60 km
Tổng vận tốc lúc đi lẫn về là :
30 + 40 = 70 (km/giờ)
Thời gian đi từ A đến B rồi quay về (không tính thời gian giao nhận hàng) là :
10 giờ - 30 phút - 6 giờ = 3 giờ 30 phút = 3,5 (giờ)
Quãng đường AB là :
70 . 3,5 = 245 km
\(\frac{x+6}{3}-x+5=\frac{2x-1}{2}\)
\(\frac{2\left(x+6\right)}{6}-\frac{6\left(x+5\right)}{6}=\frac{3\left(2x-1\right)}{6}\)
\(\frac{2x+12}{6}-\frac{6x+30}{6}=\frac{6x-3}{6}\)
\(2x+12-6x+30=6x-3\)
\(-4x+42=6x-3\)
\(-4x+42-6x+3=0\)
\(-10x+45=0\)
\(-10x=-45\)
\(x=\frac{9}{2}\)
a, Thay m = 2 vào biểu thức m2x - m = x - 1 ta đc
\(2^2x-2=x-1\Leftrightarrow4x-2=x-1\Leftrightarrow4x-2-x+1=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
b) Tìm giá trị m để nghiệm duy nhất của phương trình trên là số dương .
mk ko rõ lắm
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian người đó đi từ B về A là: \(\dfrac{x}{30}\left(h\right)\)
Theo đề, ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{2}=4\)
\(\Leftrightarrow\dfrac{7x}{120}=\dfrac{7}{2}\)
\(\Leftrightarrow7x=420\)
hay x=60(thỏa ĐK)
Vậy: AB=60km