- cho 3 số thực x,y,z thoãn mãn điều kiện \(1/x+1/y+1/z=0\)
- tính giá trị biểu thức A=\((yz/x^2+2yz)+ (zx/y^2+2zx)+(xy/z^2+2xy) \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)
\(A=\frac{yz}{x^2+yz+-xy-xz}+\frac{xz}{y^2+zx-xy-yz}+\frac{xy}{z^2+xy-xz-yz}\)
\(A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-z\right)\left(y-x\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
\(A=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)
\(A=\frac{\left(z-x\right)\left(y-z\right)\left(y-x\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}=1\)
\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)
đề cho xy+yz+xz=0 nhân cả 2 vế với -z
=>-xyz-\(z^2\left(y+x\right)\)=0
=>-xyz=\(z^2x+z^2y\)
cmtt bạn nhân với -y và -z
=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)