K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔIBH vuông tại H và ΔICH vuông tại H có 

BH=CH(cmt)

IH chung

Do đó: ΔIBH=ΔICH(hai cạnh góc vuông)

Suy ra: IB=IC(hai cạnh tương ứng)

Xét ΔIBC có IB=IC(cmt)

nên ΔIBC cân tại I(Định nghĩa tam giác cân)

Ta có: ΔIKC vuông tại K(gt)

nên IC là cạnh lớn nhất(Do IC là cạnh huyền)

hay IK<IC

mà IB=IC(cmt)

nên IK<IB

c) Ta có: ΔKBC vuông tại K(gt)

nên \(\widehat{KBC}+\widehat{KCB}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{KBC}+\widehat{ACB}=90^0\)(1)

Ta có: \(\widehat{DBC}+\widehat{ABC}=\widehat{ABD}\)(tia BC nằm giữa hai tia BA,BD)

nên \(\widehat{DBC}+\widehat{ABC}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{KBC}=\widehat{DBC}\)

hay BC là tia phân giác của \(\widehat{KBD}\)(đpcm)

a)

Ta có: ΔABC cân tại A(gt)

mà AM là đường phân giác ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

\(\Leftrightarrow AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(cmt)

BK là đường cao ứng với cạnh AC(Gt)

AM cắt BK tại I(Gt)

Do đó: I là trực tâm của ΔBAC(Tính chất ba đường cao của tam giác)

Suy ra: CI\(\perp\)AB(Đpcm)

NA
Ngoc Anh Thai
Giáo viên
4 tháng 4 2021

undefined

a) Tam giác ABC cân tại A có AM là phân giác, do đó AM cũng là đường cao
AM vuông góc với BC
Lại có BK vuông góc với AC
Do đó I là trực tâm của tam giác ABC
Vậy CI vuông góc với AB

b) Tam giác BDH = tam giác DBP (ch.gn)

Do đó BH = DP

BDKQ là hình chữ nhật => DP = HK

=> BK = BH + HK = DP + DQ (đpcm)

a: Xét ΔABC có

AM,BK là đường cao

AM cắt BK tại I

=>I là trực tâm

=>CI vuông góc AB tại N

b:

Xet ΔAKB vuông tại K và ΔANC vuông tại N có

AB=AC
góc KAB chung

=>ΔAKB=ΔANC

=>BK=CN

DP//NC

=>DP/NC=BD/BC

=>DP/BK=BD/BC

DQ//BK

=>DQ/BK=CD/CB

=>DQ+DP=BK(BD/BC+CD/CB)=BK

a:

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc OAC+góc AED=90 độ

=>góc OAC+góc AHD=90 độ

=>góc OAC+góc ABC=90 độ

=>góc OAC=góc OCA

=>OA=OC và góc OBA=góc OAB

=>OA=OB=OC

=>O là trung điểm của BC

b: góc KAB+góc OAB=90 độ

gócHAB+góc OBA=90 độ

mà góc OAB=góc OBA

nên góc KAB=góc HAB

=>AB là phân giác của góc HAK

c: ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

3 tháng 5 2022

a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)

-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.

\(\Rightarrow\)△ACH∼△BCA (g-g) 

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).

△ABC có: IH//BC (cùng vuông góc AB).

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).

-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).

\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).

\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).

-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AIK∼△ACB (g-g).

\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)

\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)

3 tháng 5 2022

b) *CM cắt AH tại D, BM cắt AC tại F.

AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.

E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).

\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)

\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).

\(\Rightarrow BM=FM\) nên M là trung điểm BC.

-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).

-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)

\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.

\(\Rightarrow\)D là trung điểm IK.

-Vậy IK, AH, CM đồng quy tại D.

8 tháng 2 2022

hhhhhhhhhh