Cho biểu thức A = 5/n - 3
a/ số nguyên n phải có điều kiện gì để A là phân số
b/ tìm n thuộc Z để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Điều kiện để M là phân số là: số tận cùng của \(n\ne4;9\)
b.Điều kiênj để M là một số nguyên là:
\(5⋮n+1\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n=\left\{-2;4;-6\right\}\) ( vì \(n+1\ne0\)
a) Số nguyên n phải có điều kiện sau để M là phân số là:
\(n+1\ne0;5;-5\)
\(n\ne0\)
\(n\ne-1\)
\(n\ne4\)
\(n\ne-6\)
Như vậy, n không thuộc các số nguyên trên và n các tất cả các số nguyên còn lại.
Với điều kiện như thế, M sẽ là phân số.
b) Số nguyên n phải có điều sau để M là số nguyên là:
\(5 ⋮ n+1\) thì M sẽ là số nguyên \(\left(n\inℤ\right)\), hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
ĐCĐK | TM | TM | TM | TM |
Vậy \(n=\left\{-6;-2;0;4\right\}\)
a)n\(\ne\)4
b)-5 chc n-4 \(\Rightarrow\)n\(\in\){5;3;9;-1}
a) Điều kiện : n \(\in\) Z / n-4 \(\ne\) 0 => n \(\ne\) 4.
b) ta có : A=\(\frac{-5}{n-4}\)là 1 số nguyên \(\Rightarrow\)-5 \(⋮\)n-4 \(\Rightarrow\) n-4 \(\in\)Ư(-5)
Ư(-5)= { -5;-1;1;5}
* n-4=-5 => n=-5+4=-1
*n-4=-1=>n=-1+4=3
*n-4=1=>n=4+1=5
*n-4=5=>n=5+4=9
Vậy: n\(\in\){ -1;3;5;9}
Good luck!
Ta có: \(A=\dfrac{4}{n-3}\left(n\in Z\right)\)
a) Để \(A\) là phân số thì \(n-3\ne0\Leftrightarrow n\ne3\)
b) Để \(A\in Z\Rightarrow\left(n-3\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{4;3;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;3;5;1;7;-1\right\}\) thì \(A\in Z\)
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3\inƯ\left(4\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
a) \(A=\frac{2}{n+1}\) là phân số
\(\Leftrightarrow n+1\ne0\)
\(\Leftrightarrow n\ne-1\)
Vậy \(n\ne-1\).
b) \(A=\frac{2}{n+1}\) là số nguyên
\(\Leftrightarrow2⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow n\in\left\{0;-2;1;-3\right\}\)
Vậy \(n\in\left\{0;-2;1;-3\right\}\).
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
a) Để A là một phân số thì n khác 3
b) Để A nguyên thì
4 chia hết cho n-3
=> n-3 thuộc Ư(4)
=>n-3 thuộc {1;-1;4;-4}
Ta có bảng
n-3 1 -1 -4 4
n 4 2 -1 7
Vậy n thuộc{4;2;-1;7} thì A nguyên
k cho mình nhé
n
Để A là phân số khi n - 3 khác 0 (n nguyên)
Vậy n khác 3(n nguyên) thì A là phân số
* Với n=0 thì A=-1/3
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4
I don't now
...............
.................