K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

đáp án là:A>B

chúc bn hok tốt

22 tháng 7 2018

\(A=\frac{20032}{2004}+\frac{2004}{2005}=9,99600798+0,999501247=10,9955092\)

\(B=\frac{2003+2004}{2004+2005}=\frac{4007}{4009}\)

\(\text{Vì : }10,9955092>1\text{ mà }\frac{4007}{4009}< 1\text{ nên }10,9955092>\frac{4007}{4009}\)

\(\text{Vậy : }A>B\)

22 tháng 7 2018

\(B=\frac{2003+2004}{2004+2005}=\frac{2003}{2004+2005}+\frac{2004}{2004+2005}\)

Ta có: \(\frac{2003}{2004}>\frac{2003}{2004+2005}\)

          \(\frac{2004}{2005}>\frac{2004}{2004+2005}\)

\(\frac{2003}{2004}+\frac{2004}{2005}>\frac{2003+2004}{2004+2005}\)

\(A>B\)

Vậy A>B

22 tháng 7 2018

đáp án là A>B

chúc bn hok tốt!

27 tháng 6 2016

\(2004A=\frac{2004^{2004}+2004}{2004^{2004}+1}=1+\frac{2003}{2004^{2004}+1}\)

\(2004B=\frac{2004^{2005}+2004}{2004^{2005}+1}=1+\frac{2003}{2004^{2005}+1}\)

\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)

\(\Rightarrow2004A>2004B\)

\(\Rightarrow A>B\)

27 tháng 6 2016

2004A=\(\frac{2004^{2004}+2004}{2004^{2004}+1}\)

\(\frac{2004^{2004}+2004}{2004^{2004}+1}-1=\frac{2003}{2004^{2004}+1}\)

2004B=\(\frac{2004^{2005}+2004}{2004^{2005}+1}\)

\(\frac{2004^{2005}+2004}{2004^{2005}+1}-1=\frac{2003}{2004^{2005}+1}\)

Ta thấy :\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)

=> \(2004A>2004B\)

Vậy \(A>B\)

 
22 tháng 4 2017

A > B nhé

A = 20042005 / 20042005 - 2004 + 1 / 20042005 - 2004

B = 20042005 / 20042005 +2004

Ta có B < 20042005 / 20042005 - 2004 ( tử bằng nhau, mẫu B lớn hơn) >> A > B ( ng` ta thêm 1 vào hack não hs thôi )

22 tháng 4 2017

Tuy mk chỉ học lớp 5 nhưng mk cũng sẽ thử đoán nha ! 

Chắc là A = B 

nếu đúng thì tk cho mk nha !

3 tháng 10 2017

a )     \(\frac{55553}{55557}>\frac{555554}{555559}\)

b)    \(\frac{2003}{2004}+\frac{2004}{2005}+\frac{2006}{2004}>3\)

4 tháng 3 2018

Bạn tham khảo nhé 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}\)

Lại có : 

\(A=\frac{2004^{2003}+1}{2004^{2004}+1}\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

23 tháng 1 2020

(k) đúng cho mình

19 tháng 3 2016

Alớn hơn nhé

19 tháng 3 2016

a lớn hơn