So sánh
A=124.\(\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)
Và B=\(\frac{1}{1.17}+\frac{1}{2.18}+\frac{1}{3.19}+...+\frac{1}{1984.2000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=124\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)
\(=\frac{124}{1984}.\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+...+\frac{1}{16}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)
Và \(B=\frac{1}{1.17}+\frac{1}{2.18}+...+\frac{1}{1984.2000}\)
\(=\frac{1}{16}\left[\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\right]\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{2000}\right)\right]\)
= \(\frac{1}{16}\) . \(\left[\left(1+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{1984}-\frac{1}{17}-...-\frac{1}{1984}\right)-\left(\frac{1}{1985}+...+\frac{1}{2000}\right)\right]\)
= \(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)
Vậy A = B
Ta có: \(A=124\cdot\frac{1}{1984}\cdot\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)
\(\Rightarrow A=\frac{1}{16}\cdot\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\right]\)
Laji cos: \(B=\frac{1}{16}\cdot\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+\frac{1}{3}-\frac{1}{19}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)
\(\Rightarrow B=\frac{1}{16}\cdot\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1984}-\frac{1}{17}-\frac{1}{18}-\frac{1}{19}-...-\frac{1}{2000}\right)\)
\(\Rightarrow B=\frac{1}{16}\cdot\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+...+\frac{1}{2000}\right)\right]\)