K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Dạng tổng quát:   \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)         với   \(a\ge b\ge0\)

Chứng minh:   

Ta có:   \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)

\(\Rightarrow\)\(\left(\sqrt{a-b}\right)^2\ge\left(\sqrt{a}-\sqrt{b}\right)^2\)

\(\Rightarrow\)\(a-b\ge a+b-2\sqrt{ab}\)

\(\Rightarrow\)\(-2b\ge-2\sqrt{ab}\)

\(\Rightarrow\)\(b\le\sqrt{ab}\)

\(\Rightarrow\)\(b^2\le ab\)  luôn đúng do  \(a\ge b\ge0\)

Vậy   \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

14 tháng 10 2018

Ta có : \(\sqrt{61-35}=\sqrt{26}>\sqrt{25}=5\)(1)

           \(\sqrt{61}-\sqrt{35}< \sqrt{64}-\sqrt{36}=8-6=2\)(2)

Từ (1) và (2) ta được :  \(\sqrt{61-35}>5>2>\sqrt{61}-\sqrt{35}\)

\(\Rightarrow\sqrt{61-35}>\sqrt{61}-\sqrt{35}\)

15 tháng 7 2019

\(\sqrt{35}< \sqrt{36}=6,\)

\(\sqrt{15}< \sqrt{16}=4\)

\(\Rightarrow\sqrt{35}+\sqrt{15}< 6+4=10\)

23 tháng 6 2017

1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)

\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)

\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)

\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)

2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)

\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)

Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)

3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)

Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

14 tháng 8 2018

a. \(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)

\(\Rightarrow\sqrt{35}+\sqrt{99}< 16\)

b. \(\sqrt{24}< \sqrt{25}=5\)

\(\sqrt{5}+\sqrt{10}>\sqrt{4}+\sqrt{9}=2+3=5\)

\(\Rightarrow\sqrt{24}< \sqrt{5}+\sqrt{10}\)

10 tháng 11 2021

a) \(ĐKXĐ:x\ne-\sqrt{3}\)

\(=\dfrac{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)

b) \(=\dfrac{1-\sqrt{a^3}}{1-\sqrt{a}}=\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}=1+\sqrt{a}+a\)

10 tháng 11 2021

tại sao câu a không tìm điều kiện ?

8 tháng 8 2015

\(\sqrt{2}B=\sqrt{8-2\sqrt{7}}+2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)

Vậy A = B 

8 tháng 8 2015

A = 11 

B = 7 

--> A > B