Cho tam giác nhọn ABC, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a, Chứng minh : AD . AB = AE. AC
b, Chứng minh : \(\widehat{ADE}=\widehat{ACB}\)
c, Gọi O là giao điểm của AH với DE . Chứng minh; OA , OH = OD . OE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
Suy ra: \(\widehat{ADE}=\widehat{ACB}\)
2)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow DE^2=2\cdot4.5=9\)
hay DE=3(cm)
b) Xét ΔABH vuông tại H có
\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{3}{2}\)
nên \(\widehat{ABC}\simeq56^0\)
a) Xét ΔABH vuông tại H và ΔAHE vuông tại E có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔAHE(g-g)
b) Xét ΔAEH vuông tại E và ΔHEB vuông tại E có
\(\widehat{EAH}=\widehat{EHB}\left(=90^0-\widehat{EBH}\right)\)
Do đó: ΔAEH\(\sim\)ΔHEB(g-g)
Suy ra: \(\dfrac{EA}{EH}=\dfrac{EH}{EB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HE^2=AE\cdot BE\)(đpcm)
a: Xét ΔABC có
BD là đường cao ứng với cạnh AC
CE là đường cao ứng với cạnh AB
BD cắt CE tại H
Do đó: H là trực tâm của ΔBAC
hay AH\(\perp\)BC tại K
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{HBK}\) chung
Do đó: ΔBKH\(\sim\)ΔBDC
Suy ra: \(\dfrac{BK}{BD}=\dfrac{BH}{BC}\)
hay \(BH\cdot BD=BK\cdot BC\)
1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)
nên ΔADE\(\sim\)ΔACB(c-g-c)
\(a,Do\Delta\)vuông AHC có:
AH2=AE.AC (1)
\(\Delta\) vuông AHB có:
AH2=AD.AB (2)
Từ (1) và (2) :
AE.AC =AD.AB
b, Xest \(\Delta\)AED và \(\Delta\)ABC có:
\(\widehat{BAC}\)chung
AE.AC=AD.AB (câu a)
=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)
=> Góc ADE = góc ACB ( điều phải chứng minh )
c, Do tam giác ADE đồng dạng với tam giác ABC
=> Góc E1 = Góc B1 (1)
Mà góc B1 + góc H1 = 90 độ ( tam giác BDH vuông tại D )
Góc H1 + Góc H2 = 90 độ ( tam giác AHB vuông tại D )
=> Góc B1 = Góc H2 (2)
Từ (1) và (2) : => Góc E1 = góc H2
Xét tam giác AOE và tam giác DOH có:
Góc O1 = Góc O2 ( 2 góc đối đỉnh )
Góc E1 = góc H2 ( chứng minh trên )
=> tam giác AOE đồng dạng với tam giác DOH (g-g)
=> \(\frac{OA}{OD}=\frac{OE}{OH}\)=> OA . OH = OD . OE