K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

B D O A Ê C H 1 2 2 1 1

\(a,Do\Delta\)vuông AHC có:

AH2=AE.AC (1)

\(\Delta\) vuông AHB có:

AH2=AD.AB (2) 

Từ (1) và (2) :

AE.AC =AD.AB

b, Xest \(\Delta\)AED và \(\Delta\)ABC có:

\(\widehat{BAC}\)chung

AE.AC=AD.AB (câu a)

=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)

=> Góc ADE = góc ACB ( điều phải chứng minh )

c, Do tam giác ADE đồng dạng với tam giác ABC 

=> Góc E1 = Góc B1 (1)

Mà góc B1 + góc H1 = 90 độ ( tam giác BDH vuông tại D )

Góc H1 + Góc H2 = 90 độ ( tam giác AHB vuông tại D )

=> Góc B1 = Góc H2 (2)

Từ (1) và (2) : => Góc E1 = góc H2 

Xét tam giác AOE và tam giác DOH có:

Góc O1 = Góc O2 ( 2 góc đối đỉnh )

Góc E1 = góc H2 ( chứng minh trên )

=> tam giác AOE đồng dạng với tam giác DOH (g-g)

=> \(\frac{OA}{OD}=\frac{OE}{OH}\)=> OA . OH = OD . OE

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

15 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

Suy ra: \(\widehat{ADE}=\widehat{ACB}\)

2)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow DE^2=2\cdot4.5=9\)

hay DE=3(cm)

b) Xét ΔABH vuông tại H có

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{3}{2}\)

nên \(\widehat{ABC}\simeq56^0\)

12 tháng 7 2021

undefined

a) Xét ΔABH vuông tại H và ΔAHE vuông tại E có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔAHE(g-g)

b) Xét ΔAEH vuông tại E và ΔHEB vuông tại E có 

\(\widehat{EAH}=\widehat{EHB}\left(=90^0-\widehat{EBH}\right)\)

Do đó: ΔAEH\(\sim\)ΔHEB(g-g)

Suy ra: \(\dfrac{EA}{EH}=\dfrac{EH}{EB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HE^2=AE\cdot BE\)(đpcm)

a: Xét ΔABC có

BD là đường cao ứng với cạnh AC

CE là đường cao ứng với cạnh AB

BD cắt CE tại H 

Do đó: H là trực tâm của ΔBAC

hay AH\(\perp\)BC tại K

Xét ΔBKH vuông tại K và ΔBDC vuông tại D có

\(\widehat{HBK}\) chung

Do đó: ΔBKH\(\sim\)ΔBDC

Suy ra: \(\dfrac{BK}{BD}=\dfrac{BH}{BC}\)

hay \(BH\cdot BD=BK\cdot BC\)

1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)

nên ΔADE\(\sim\)ΔACB(c-g-c)

30 tháng 10 2021

vip đấy