Cho tam giác ABC nhọn (AB<AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M. Gọi I là điểm đối xứng với H qua BC.
a) Chứng minh tứ giác BIKC là hình thang cân.
b) BK cắt HI tại G. Tìm điều kiện của tam giác ABC để tứ giác GHCK là hình thang cân.
a) Giao điểm của AH và BC là E. Dễ thấy: \(\Delta\)BHM = \(\Delta\)CKM (c.g.c) => ^HBM = ^KCM
=> ^HBC = ^KCB. Do H đối xứng với I qua BC => ^HBC = ^IBC => ^KCB = ^IBC (1)
Xét \(\Delta\)HIK: E là trung điểm IH; M là trung điểm của HK => EK là đường trung bình \(\Delta\)HIK
=> EM // IK hay IK // BC => Tứ giác BIKC là hình thang (2)
Từ (1) & (2) => Tứ giác BIKC là hình thang cân (đpcm).
b) Dễ c/m tứ giác BHCK là hình bình hành (Do có tâm đối xứng) => HC // BK
Hay HC // GK => Tứ giác GHCK là hình thang
Để tứ giác GHCK là hình thang cân thì ^GHC = ^KCH
<=> ^HAC + ^HCA = ^HCB + ^HBC <=> ^HCA = ^HCB ( Vì ^HAC = ^HBC, cùng phụ ^ACB)
<=> CH là phân giác ^ACB. Mà CH cũng là đường cao của \(\Delta\)ABC => \(\Delta\)ABC cân tại C
Vậy khi \(\Delta\)ABC cân tại C thì tứ giác GHCK là hình thang cân.