Cho tam giác AMB vuông tại M . Qua B kẻ đường thẳng d vuông góc với AB . Cho biết góc MAB = @ ,@ < 45 độ và AB = 2a
a) Tính MA,MB,MH theo @ và a
b) Tính MH theo a và 2@
c) Chứng minh cos 2@ = 1 - 2sin2 @; cos2@ = 2cos2@ - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo hệ thức lượng trong tam giác vuông AMB ta có
\(cos\alpha=\frac{MA}{AB}\Leftrightarrow MA=2a.cos\alpha\)
\(sin\alpha=\frac{MB}{AB}\Rightarrow MB=2a.sin\alpha\)
Vì \(\hept{\begin{cases}MH\perp d\\AB\perp d\end{cases}\Rightarrow MH//AB}\)
=> MH=KB
mà \(KB=AB-AK=2a-MA.cos\alpha=2a-2a.cos^2\alpha\)
đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog
a) \(\Delta ABM\) nội tiếp đường tròn (O) có bán kính AB
=> \(\Delta ABM\) vuông tại M
b) Xét \(\Delta ABM\) vuông tại M, đường cao MH
=> \(AB^2+BH^2=25\)
=> AB =5
Ta có: MH .BC = MA.MB
=> MH =2,4
c) \(\Delta AMC\) vuông tại M, MN là tiếp tuyến
=> MN = NA= NC =AC/2
Xét \(\Delta OAN\) và \(\Delta OMN\) có:
OA =OH =R
ON chung
NA = NM
=> \(\Delta OAN=\Delta OMN\)
=> \(\widehat{OAN}=\widehat{OMN}=90^o\)
=> MN \(\perp\) OM
mà M thuộc (O)
=> MN là tiếp tuyến của (O)
d) Ta có: ON là tia phân giác \(\widehat{AOM}\)
OD là phân giác góc BOM
\(\widehat{AOM}=\widehat{BOM}\) (kề bù)
=> ON\(\perp\)OD
Xét \(\Delta NOD\) vuông tại O, đường cao OM
\(OM^2=NA.DB=>R^2=NA.DB\) (đpcm)