Cho a,b,c là các số hữu tỉ sao cho \(a+b\sqrt{2}+c\sqrt{3}=0\). CHứng minh rằng a = b = c = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a=b+c\Rightarrow c=a-b\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)
=> Là một số hữu tỉ do a,b,c là số hữu tỉ
Ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)
\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2.\dfrac{c+b-a}{abc}\)
\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2\left(do-a\text{=}b+c\right)\)
\(\Rightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\text{=}\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}\)
\(\text{=}\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\)
Do \(a,b,c\) là các số hữu tỉ khác 0 nên
\(\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) là một số hữu tỉ
\(\Rightarrow dpcm\)
Ta có :
P = \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2ac}+\dfrac{1}{2ab}-\dfrac{1}{2bc}}\)
\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2abc}\left(b+c-a\right)}\)
\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) (do a = b + c)
=> P là số hữu tỉ với a,b,c \(\ne0\)
P =
(do a = b + c)
=> P là số hữu tỉ với a,b,c
Ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(=\frac{\left(b+c\right)^2b^2+\left(b+c\right)^2c^2+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{b^4+2b^3c+3b^2c^2+2bc^3+c^4}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{\left(b^4+2b^2c^2+c^4\right)+2bc\left(b^2+c^2\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}}=\frac{b^2+bc+c^2}{bc\left(b+c\right)}\)
Vì a, b, c là các số hữu tỷ nên \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là số hữu tỷ
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\left(\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{bc}}=\sqrt{\frac{1}{a^2}+\left(\frac{b+c}{bc}\right)^2-\frac{2}{bc}.}\)
\(=\sqrt{\frac{1}{a^2}+\frac{a^2}{b^2c^2}-\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}-\frac{a}{bc}\right)^2}\)\(=\left|\frac{1}{a}-\frac{a}{bc}\right|\)
Do a,b,c là các số hữu tỉ => đpcm
Ta có
\(\frac{1}{a^2\:}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b\:}-\frac{1}{c}\right)^2\)2. + \(2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)
\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)+ \(2.\frac{c+b-a}{abc}\)\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(Vì a=b+c)
Từ đó suy ra
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\)\(=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)Vì a,b,c là số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ
=> đpcm
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Fairy Tail bn tham khảo nè:
x, y , z hữu tỉ
√x + √y + √z hữu tỉ
- Nếu trong ba số √x , √y , √z có 1 số hữu tỉ , giả sử √x => √y + √z hữu tỉ
Đặt y = a/b; z = c/d đều hữu tỉ với a,b, c, d thuộc N *
√y + √z hữu tỉ => (√y + √z)² hữu tỉ => √(zy) hữu tỉ => √(ac/bd) hữu tỉ => ac/bd = (p/q)² => √(a/b) = p/q√(d/c) với p, q Є N*
=> √y + √z = √(a/b) + √(c/d) = p/q√(d/c) + √(c/d) = (pd + qc)/√(cd) hữu tỉ => √(cd) hữu tỉ => d√(c/d) = √(cd) hữu tỉ => √z = √(c/d) hữu tỉ => √y cung hữu tỉ
Vậy √x , √y , √z đều là số hữu tỉ
- Nếu cả √x , √y , √z đều là số vô tỉ
Đặt √x + √y + √z = p/q với p, q thuộc N* => x + y + 2√(xy) = (p/q)² - 2p/q √z + z =>
=> √(xy) + p/q√z hữu tỉ
Do xy hửu tỉ và (p/q)^2 z hữu tỉ nên có thể đặt xy = a/b và (p/q)^2 z = c/d
thì ta có √(a/b) + √(c/d) hữu tỉ. đến đây lí luận như trường hợp trên thì suy ra √(xy) và p/q√z hữu tỉ => √z hữu tỉ => mâu thuẫn với giả thiết √z vô tỉ
Vậy √x , √y , √z đều là số hữu tỉ
`````````````````````````````
Với bài 3 em có thể rút ngắn hơn bằng cách giả sử một trong ba số √x , √y , √z là số vô tỉ , ví dụ là √z, sau đó dùng cách lý luận ở trường hợp 2 suy ra √(xy) + p/q√z hữu tỉ, sau đó lại áp dụng lý luận như của trường hợp 1 để suy ra √z vô tỉ => trái giả thiết, tức là ko có số nào trong chứng là số vô tỉ cả. Đến đây bài toán đã dc chưng minh xong
```````````````````````````````````````...
Bài 4/ Đề của em ko đúng, phải thay dấu - bằng dấu + . Khi đó ta làm thế này
(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ca +(a^2+b^2-c^2)/2ab=1
<=> (b^2+c^2-a^2)/2bc - 1 +(a^2+c^2-b^2)/2ca - 1 + (a^2+b^2-c^2)/2ab + 1 = 0
<=> a[ (b-c)² - a²] + b[ ( a-c)² -b²] + c[ (a+b)² - c²] = 0
<=> a( a+b-c)(b-a-c) + b( a+b-c)(a-b-c) + c(a+b-c)(a+b+c) = 0
<=> (a+b-c) [ c(a+b+c) -a(a+c-b) - b(b+c-a)] = 0
<=> (a+b-c)[ c² -(a-b)²] = 0
<=> (a+b-c)(a+c-b)(b+c-a) = 0
nếu a + b = c =>(b^2+c^2-a^2)/2bc = 1 ; (a^2+c^2-b^2)/2ca = 1 và (a^2+b^2-c^2)/2ab = -1
xét tương tự cho các trường hợp a + c-b = 0 và b+c-a = 0 suy ra DPCM