1. Tính các góc của hình thang ABCD (AB//CD) biết hiệu của góc A và Góc D là 40 độ, góc B bằng 4 lần góc C.
2. Cho hình thang ABCD (AB//CD) có các tia phân giác của góc C và góc D cắt nhau tại K thuộc AB. CMR: AB = AD + BC
MK ĐG GẤP, BN NÀO NHANH NHẤT MÀ ĐÚNG MK SẼ TÍCH CHO, CẢM ƠN CÁC BN NHIỀU!!!
1. Vì tứ giác ABCD là hình thang AB//CD nên góc A+ góc D=180 độ mà góc A- góc D=40 do suy ra goc D= (180-40):2=70 do suy ra goc A= 180-70=110 do
Tương tự ta cũng có: \(\widehat{B}+\widehat{C}=180^0\)ma \(\widehat{B}=4\times\widehat{C}\)\(\Rightarrow4\times\widehat{C}+\widehat{C}=180^0\Rightarrow5\times\widehat{C}=180^0\Rightarrow\widehat{C}=36^0\Rightarrow\widehat{B}=180^0-36^0=144^0\)
Còn bài 2 thì tớ chưa nghĩ ra bạn rang đoi nhá
2. Vì AB//DC ma \(K\in AB\Rightarrow\widehat{AKD}=\widehat{KDC};\widehat{BKC}=\widehat{KCD}\) (1)
Vì DK là tia phân giác của \(\widehat{ADC}\Rightarrow\widehat{ADK}=\widehat{KDC}\)và CK là tia phân giác của \(\widehat{BCD}\Rightarrow\widehat{KCB}=\widehat{KCD}\)(2)
Từ(1) vả (2) ta có: \(\widehat{AKD}=\widehat{ADK};\widehat{BKC}=\widehat{BCK}\)suy ra tam giác AKD cân tại A và tam giác KBC cân tại B
\(\Rightarrow AK=AD;BK=BC\Rightarrow AK+BK=AD+BC\Rightarrow AB=AD+BC\)