Tính biểu thức sau bằng hai cách (áp dụng quy tắc nhân đa thức và áp dụng hằng đẳng thức đáng nhớ):
a) (a - b + c)2 ;
b) (a + b + c)(a + b - c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Nhân từng hạng tử của đa thức/đơn thức này cho từng hạng tử của đa thức/đơn thức kia. Sau đó, thu gọn lại ta được kết quả cần tìm
Câu 2:
Có 7 hằng đẳng thức. Công thức:
1: \(\left(a+b\right)^2=a^2+2ab+b^2\)
2: \(\left(a-b\right)^2=a^2-2ab+b^2\)
3: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
4: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
5: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
6: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
7: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
a) \(\left(a^2+b+c\right)^2\)
\(=\left(a^2+b\right)^2+2\left(a^2+b\right)c+c^2\)
\(=a^4+2a^2b+b^2+2a^2c+2bc+c^2\)
b) \(\left(a+b+c\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ca+2bc+c^2\)
a,
C1: (a - b + c)2 = (a - b + c) (a - b + c)
= a (a - b + c) - b (a - b + c) +c (a - b + c)
= a2 - ab + ac - ab + b2 - bc + ac - bc + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
C2: (a - b + c)2 = [ (a - b) + c ]2
= (a - b)2 + 2c (a - b) + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
b,
C1: (a + b + c)(a + b - c) = a (a + b - c) + b (a + b - c) + c (a + b - c)
= a2 + ab - ac + ab + b2 - bc + ac + bc - c2
= a2 + 2ab + b2 - c2
C2: (a + b + c)(a + b - c) = [ (a + b) + c ] [ ( a+ b) - c ]
= (a + b)2 - c2
= a2 + 2ab + b2 - c2
hok tốt ~