Chứng tỏ rằng:
a) Nếu hai số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7. Chứng minh bài toán tổng quát.
b) Nếu hai số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số chia 7 có dư là \(7k+a;7q+a\left(p,q,a\in N;a\le7\right)\)
Ta có \(7k+a-\left(7q+a\right)=7k-7q=7\left(k-q\right)⋮7\)
Vậy ...
Gọi \(2\) số đề bài cho là \(7m+k\) và \(7.n+k\)
Hiệu của chúng là: \(\left(7.m+k\right)-\left(7.n+k\right)\)
\(=7.m+k-7.n-k\)
\(=7.m-7.n\)
\(7.\left(m-n\right)⋮7\)
Chứng tỏ nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7
Gọi 2 số đó là a và b và d là số dư khi chia a cho 7 và chia b cho 7
\(\Rightarrow\left\{{}\begin{matrix}a=7k+d\\b=7n+d\end{matrix}\right.\) \(\left(k,n\in Z\right)\)
\(\Rightarrow a-b=7k+d-7n-d=7\left(k-n\right)⋮7\left(đpcm\right)\)
gọi a và b là hai số có cùng số dư là r khi chia cho 7 (giả sử a > hoặc bằng b)
ta có:a=7m+r,b=7n+r(m,m thuộc N)
khi đó a-b=(7m+r)-(7n-r)=7m-7n chia hết cho 7
Gọi a và b là 2 số có cùng số dư khi chia cho 7 (giả sử a\(\ge\)b)
Ta có a=7m +r ; b=7n +r (m ; n \(\in\)N)
Khi đó a-b = ( 7m - r ) - ( 7n - r ) = 7m - 7n \(⋮\)7 (điều phải chứng minh)
\(\text{ Gọi 2 số cùng số dư khi chia cho 7 là a;b(a,b thuộc Z) }\)
\(\text{Gọi a/7=q+k(K là số dư q là thương) }\)
\(\text{Gọi b/7=p+k(p là thương, k là số dư) }\)
\(\text{suy ra a/7-b/7=q -- p }\)
\(\text{(a-b)/7 = q -- p }\)
\(\text{a-b = (q -- p) X7 }\)
\(\text{có (q -- p) X 7chia hết cho 7 suy ra a-b chia hết cho 7 }\)
ta có :
a : 7 = q dư c
b : 7 = d dư c
a=(7.q)+c
b=(7.d)+c
a-b =( 7 . q ) + c - ( 7 . d ) + c
a-b=7.q-7.d
a-b=7.(q-d)
=> a-b chia hết cho 7
cũng có thể là b-alàm tương tự
Gọi hai số đó là 7k+a và 7m+a (do 2 số đó có cùng số dư khi chia cho bảy)
7k+a -7m+a =7k-7m=7.(k-m)
là số chia hết cho bảy
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá