K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

`M=sqrt{(3a-1)^2}+2a-3`

`=|3a-1|+2a-3`

`=3a-1+2a-3(do \ a>=1/3)`

`=5a-4`

`N=sqrt{(4-a)^2}-a+5`

`=|4-a|-a+5`

`=a-4-a+5(do \ a>4)`

`=1`

`I=sqrt{(3-2a)^2}+2-7`

`=|3-2a|-5`

`=3-2a-5(do \ a<3/2)`

`=-2-2a`

`K=(a^2-9)/4*sqrt{4/(a-2)^2}`

`=(a^2-9)/4*|2/(a-2)|`

`=(a^2-9)/(2|a-2|)`

Nếu `3>a>2=>|a-2|=a-2`

`=>K=(a^2-9)/(2(a-2))`

Nếu `a<2=>|a-2|=2-a`

`=>K=(a^2-9)/(2(2-a))`

28 tháng 6 2021

\(M=\left|3a-1\right|+2a-3\)

\(a-\dfrac{1}{3}\ge0\)

\(\Rightarrow M=3a-1+2a-3=5a-4\)

\(N=\left|4-a\right|-a+5\)

\(4-a< 0\)

\(\Rightarrow N=a-4-a+5=1\)

\(I=\left|3-2a\right|-5\)

\(a-\dfrac{3}{2}< 0\)

\(\Rightarrow I=3-2a-5=-2a-2\)

K, Ta có : \(a-3< 0\)

\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
 

Câu 2: 

Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

Câu 1: 

Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)

\(=1\)

22 tháng 1 2022

\(a,\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

\(b,A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\)

\(\Rightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\left(\sqrt{a}-5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a+5\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\sqrt{a}-25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a-10\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{\left(\sqrt{a}-5\right)^2}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)

a: \(=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

b: \(A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}=\dfrac{\left(\sqrt{a}-5\right)^2}{a-25}=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Bài 1
\(1+\frac{1}{a^2}+\frac{1}{(a+1)^2}=(1+\frac{1}{a})^2-\frac{2}{a}+\frac{1}{(a+1)^2}\)

\(=(\frac{a+1}{a})^2-2.\frac{a+1}{a}.\frac{1}{a+1}+(\frac{1}{a+1})^2=(\frac{a+1}{a}-\frac{1}{a+1})^2\)

\(=(1+\frac{1}{a}-\frac{1}{a+1})^2\)

$\Rightarrow A=|1+\frac{1}{a}-\frac{1}{a+1}|=1+\frac{1}{a}-\frac{1}{a+1}$ với $a>0$

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Bài 2:

Áp dụng kết quả bài 1 thì:
\(B=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2011}-\frac{1}{2012}\)

\(=2011+(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011})-(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012})\)

\(=2012-\frac{1}{2012}\)

8 tháng 11 2021

\(a,=\left|2-\sqrt{3}\right|=2-\sqrt{3}\\ b,=\left|3-\sqrt{11}\right|=\sqrt{11}-3\\ c,=2\left|a\right|=2a\\ d,=3\left|a-2\right|=3\left(2-a\right)\left(a< 0\Leftrightarrow a-2< 0\right)\)

1) Ta có: \(\dfrac{a-6\sqrt{a}+9}{5\sqrt{a}-15}\)

\(=\dfrac{\left(\sqrt{a}-3\right)^2}{5\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\sqrt{a}-3}{5}\)

2) Ta có: \(5x-\sqrt{x^2-10x+25}\)

\(=5x-\left|x-5\right|\)

\(=5x-5+x\)

=6x-5

3) Ta có: \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)

\(=\dfrac{\left|x-1\right|}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\pm1}{x+1}\)

4) Ta có: \(3\sqrt{5}-\sqrt{46-6\sqrt{5}}\)

\(=3\sqrt{5}-3\sqrt{5}+1\)

=1

18 tháng 6 2023

\(1,\sqrt{4\left(a-4\right)^2}\left(dkxd:a\ge4\right)\)

\(=\sqrt{4}.\sqrt{\left(a-4\right)^2}\)

\(=\sqrt{2^2}.\left|a-4\right|\)

\(=2\left(a-4\right)\)

\(=2a-8\)

\(2,\sqrt{9\left(b-5\right)^2}\left(dkxd:b< 5\right)\)

\(=\sqrt{9}.\sqrt{\left(b-5\right)^2}\)

\(=\sqrt{3^2}.\left|b-5\right|\)

\(=3\left(-b+5\right)\)

\(=-3b+15\)

 

18 tháng 6 2023

Thế -b+5 khác 5-b à 

Ngô Hải Nam