Tính nhanh :
E = \(\frac{1}{1357}\cdot5\frac{1}{301}-2\frac{1356}{1357}\cdot\frac{2}{301}-\frac{3}{1357\cdot301}+\frac{6}{301}\)
Các bạn giải giúp mk nha ! Cảm ơn các bạn nhiều !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(23\frac{11}{15}-26\frac{13}{20}\right)}{12^2+5^2}\cdot\frac{1-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2-13.5}-\frac{19}{37}\)
\(A=\frac{\left(23+\frac{11}{15}-26+\frac{13}{20}\right)}{144+25}\cdot\frac{1-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}}{9.13.2-13.5}-\frac{19}{37}\)
\(A=\frac{\left(23+26+\frac{11}{15}-\frac{13}{20}\right)}{169}\cdot\frac{1-\left(\frac{1}{5}-\frac{1}{6}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)}{13.\left(9.2-5\right)}-\frac{19}{37}\)
\(A=\frac{49+\frac{44}{60}-\frac{39}{60}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{7}-\frac{1}{7}+\frac{1}{8}}{13.13}-\frac{19}{37}\)
\(A=\frac{49+\frac{1}{20}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{8}}{169}-\frac{19}{37}\)
\(A=\frac{49\frac{1}{20}}{169}\cdot\frac{\frac{4}{5}+\frac{5}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981}{169}\cdot\frac{\frac{32}{40}+\frac{5}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981}{169}\cdot\frac{\frac{37}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981.\frac{37}{40}}{169^2}-\frac{19}{37}\)
\(A=\frac{\frac{36297}{40}}{28561}-\frac{19}{37}\)
\(A=\frac{907,425}{28561}-\frac{19}{37}\)
\(A=\frac{33574,725}{1056757}-\frac{542659}{1056757}\)
\(A=\frac{-509084,275}{1056757}=-0,04604282...\)
Mik chỉ làm đc thế này thôi, ôn thi học kì II tốt nha bạn!
\(P=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}\right)-\left(\frac{1}{98}-\frac{1}{97}\right)-\left(\frac{1}{97}-\frac{1}{96}\right)-...-\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{1}{2}\)
\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-\frac{1}{97}+\frac{1}{96}-...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}\)
\(=0\)
ĐS: \(0\)
=\(\frac{1}{99}\)-\(\frac{1}{99}\)-\(\frac{1}{98}\)-\(\frac{1}{98}\)-.................-\(\frac{1}{3}\)-\(\frac{1}{2}\)-\(\frac{1}{2}\)-1
=\(\frac{1}{99}\)-(\(\frac{1}{99}\)+\(\frac{1}{98}\)+..............+\(\frac{1}{3}\)+\(\frac{1}{2}\)+\(\frac{1}{2}\)+1)
=\(\frac{1}{99}\)-......
hình như sai rùi????
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
(1/1×2 + 1/2×3 + ... + 1/9×10) × x < 2/1×3 + 2/3×5 + ... + 2/9×11
(1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10) × x < 1 - 1/3 + 1/3 - 1/5 + ... + 1/9 - 1/11
(1 - 1/10) × x < 1 - 1/11
9/10 × x < 10/11
x < 10/11 : 9/10
x < 10/11 × 10/9
x < 100/99
Mà x là số tự nhiên => x = 0 hoặc 1
a) \(\frac{12}{25}+\frac{3}{5}+\frac{13}{25}\)
= \(\left(\frac{12}{25}+\frac{13}{25}\right)+\frac{3}{5}\)
= \(\frac{25}{25}+\frac{3}{5}\)
= \(1+\frac{3}{5}\)
= \(\frac{1}{1}+\frac{3}{5}\)
= \(\frac{5}{5}+\frac{3}{5}\)
= \(\frac{8}{5}\)
bài này tớ mà làm sai thì tớ ......................ko lm người........-_-
a) \(\frac{12}{25}+\frac{3}{5}+\frac{13}{25}\)
= \(\frac{12}{25}+\frac{15}{25}+\frac{13}{25}\)
= \(\frac{12+15+13}{25}\)
= \(\frac{40}{25}\)
= \(\frac{8}{5}\)
b) \(\frac{3}{2}+\frac{2}{3}+\frac{4}{3}\)
= \(\frac{9}{6}+\frac{4}{6}+\frac{8}{6}\)
= \(\frac{9+4+8}{6}\)
= \(\frac{21}{6}\)
= \(\frac{7}{2}\)
\(\frac{1}{2!}+\frac{2!}{4!}+...+\frac{198!}{200!}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
ĐẶT \(\frac{1}{1357}=a;\frac{1}{301}=b\)
\(\Leftrightarrow M=a.\left(5+b\right)-\left(2+1-a\right).2b-3ab+6b\)
\(\Leftrightarrow M=5a+ab-4b-2b+2ab-3ab+6b\)
\(\Leftrightarrow M=5a\)
thay vào ta được
\(M=5.\frac{1}{1357}=\frac{5}{1357}\)