K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

ĐẶT \(\frac{1}{1357}=a;\frac{1}{301}=b\)

\(\Leftrightarrow M=a.\left(5+b\right)-\left(2+1-a\right).2b-3ab+6b\)

   \(\Leftrightarrow M=5a+ab-4b-2b+2ab-3ab+6b\)

 \(\Leftrightarrow M=5a\)

thay vào ta được 

\(M=5.\frac{1}{1357}=\frac{5}{1357}\)

18 tháng 4 2018

\(A=\frac{\left(23\frac{11}{15}-26\frac{13}{20}\right)}{12^2+5^2}\cdot\frac{1-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2-13.5}-\frac{19}{37}\)

\(A=\frac{\left(23+\frac{11}{15}-26+\frac{13}{20}\right)}{144+25}\cdot\frac{1-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}}{9.13.2-13.5}-\frac{19}{37}\)

\(A=\frac{\left(23+26+\frac{11}{15}-\frac{13}{20}\right)}{169}\cdot\frac{1-\left(\frac{1}{5}-\frac{1}{6}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)}{13.\left(9.2-5\right)}-\frac{19}{37}\)

\(A=\frac{49+\frac{44}{60}-\frac{39}{60}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{7}-\frac{1}{7}+\frac{1}{8}}{13.13}-\frac{19}{37}\)

\(A=\frac{49+\frac{1}{20}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{8}}{169}-\frac{19}{37}\)

\(A=\frac{49\frac{1}{20}}{169}\cdot\frac{\frac{4}{5}+\frac{5}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981}{169}\cdot\frac{\frac{32}{40}+\frac{5}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981}{169}\cdot\frac{\frac{37}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981.\frac{37}{40}}{169^2}-\frac{19}{37}\)

\(A=\frac{\frac{36297}{40}}{28561}-\frac{19}{37}\)

\(A=\frac{907,425}{28561}-\frac{19}{37}\)

\(A=\frac{33574,725}{1056757}-\frac{542659}{1056757}\)

\(A=\frac{-509084,275}{1056757}=-0,04604282...\)

Mik chỉ làm đc thế này thôi, ôn thi học kì II tốt nha bạn!

16 tháng 6 2017

\(P=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}\right)-\left(\frac{1}{98}-\frac{1}{97}\right)-\left(\frac{1}{97}-\frac{1}{96}\right)-...-\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{1}{2}\)

\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-\frac{1}{97}+\frac{1}{96}-...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}\)

\(=0\)

ĐS: \(0\)

16 tháng 6 2017

=\(\frac{1}{99}\)-\(\frac{1}{99}\)-\(\frac{1}{98}\)-\(\frac{1}{98}\)-.................-\(\frac{1}{3}\)-\(\frac{1}{2}\)-\(\frac{1}{2}\)-1

=\(\frac{1}{99}\)-(\(\frac{1}{99}\)+\(\frac{1}{98}\)+..............+\(\frac{1}{3}\)+\(\frac{1}{2}\)+\(\frac{1}{2}\)+1)

=\(\frac{1}{99}\)-......

hình như sai rùi????

6 tháng 7 2017

\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)

\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)

\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)

\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)

\(\Leftrightarrow4x-32=-18x\)

\(\Rightarrow x=\frac{16}{11}\)

20 tháng 8 2016

(1/1×2 + 1/2×3 + ... + 1/9×10) × x < 2/1×3 + 2/3×5 + ... + 2/9×11

(1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10) × x < 1 - 1/3 + 1/3 - 1/5 + ... + 1/9 - 1/11

(1 - 1/10) × x < 1 - 1/11

9/10 × x < 10/11

x < 10/11 : 9/10

x < 10/11 × 10/9

x < 100/99

Mà x là số tự nhiên => x = 0 hoặc 1

20 tháng 8 2016

BẠN LÀ FAN CỦA HARI WON HẢ

14 tháng 2 2018

a) \(\frac{12}{25}+\frac{3}{5}+\frac{13}{25}\)

\(\left(\frac{12}{25}+\frac{13}{25}\right)+\frac{3}{5}\)

\(\frac{25}{25}+\frac{3}{5}\)

\(1+\frac{3}{5}\)

\(\frac{1}{1}+\frac{3}{5}\)

\(\frac{5}{5}+\frac{3}{5}\)

\(\frac{8}{5}\)

bài này tớ mà làm sai thì tớ ......................ko lm người........-_-

14 tháng 2 2018

a) \(\frac{12}{25}+\frac{3}{5}+\frac{13}{25}\)

\(\frac{12}{25}+\frac{15}{25}+\frac{13}{25}\)

\(\frac{12+15+13}{25}\)

\(\frac{40}{25}\)

\(\frac{8}{5}\)

b) \(\frac{3}{2}+\frac{2}{3}+\frac{4}{3}\)

\(\frac{9}{6}+\frac{4}{6}+\frac{8}{6}\)

\(\frac{9+4+8}{6}\)

\(\frac{21}{6}\)

\(\frac{7}{2}\)

6 tháng 8 2015

\(\frac{1}{2!}+\frac{2!}{4!}+...+\frac{198!}{200!}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)