cho hình vuông abcd , M là trung điểm của BC , N la trung điểm của ĐC .chứng minh DM vuông góc với AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tam giác BMD vuông tại B có BI là trung tuyến nên IB=MD/2=ID lại có CB = CD
=> IC là đường trung trực của đoạn thẳng BD
=> IC qua trung điểm O của BD hay I,O,C thẳng hàng.
Mặt khác: A,O,C thẳng hàng (O là trung điểm AC)
Vậy A,O,I,C thẳng hàng.
b/ Ta có: AFD = CID (cùng bù với góc AID)
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc CID = CED (2 đỉnh kề cùng nhìn cạnh CD dưới góc bằng nhau).
Do đó: góc AFD = CED.
c/ Tự chứng minh tam giác AFD = tam giác CED => DF = DE
EF là trung trực của đoạn thẳng MD => DF = FM và DE = EM
Từ đó suy ra DF=FM=EM=DE => DEMF là hình thoi (1)
=> DI là phân giác của góc EDF.
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc IDE = góc ICE = 45 độ => Góc EDF = 2.IDE = 90 độ (2)
Từ (1) và (2) => DEMF là hình vuông.
1) \(DN=\dfrac{1}{2}DC=\dfrac{1}{2}BC=CM\)
△ADN và △DCM có: \(\widehat{ADN}=\widehat{DCM}=90^0;AD=DC;DN=CM\)
\(\Rightarrow\)△ADN=△DCM (c-g-c).
\(\Rightarrow\widehat{AND}=\widehat{DMC}\)
\(\widehat{DEN}=180^0-\widehat{MDC}-\widehat{AND}=180^0-\widehat{MDC}-\widehat{DMC}=180^0-90^0=90^0\)
\(\Rightarrow\)AN⊥DM tại E.
△DEN và △DCM có: \(\widehat{DEN}=\widehat{DCM}=90^0;\widehat{MDC}\) là góc chung.
\(\Rightarrow\)△DEN∼△DCM (g-g) \(\Rightarrow\dfrac{DE}{DC}=\dfrac{DN}{DM}\Rightarrow DC.DN=DE.DM\).
△DCB vuông cân tại C \(\Rightarrow DC=CB=BD\sqrt{2}\).
\(DC.DN=BD\sqrt{2}.\dfrac{BD\sqrt{2}}{2}=\dfrac{BD^2.2}{2}=BD^2\)
\(\Rightarrow DB^2=DE.DM\)
2) F là trung điểm AD, BF cắt AN tại G.
Tứ giác DFBM có: DF//BM, \(DF=BM=\dfrac{1}{2}AD=\dfrac{1}{2}BC\)
\(\Rightarrow\)DFBM là hình bình hành \(\Rightarrow\)DM//BF mà AN⊥DM.
\(\Rightarrow\)BF⊥AN tại G.
△AED có: FG//DE, F là trung điểm AD.
\(\Rightarrow\)G là trung điểm AE.
△ABE có: BG vừa là đường cao vừa là trung tuyến.
\(\Rightarrow\)△ABE cân tại B\(\Rightarrow AB=BE=CB\Rightarrow\)△BCE cân tại B.
Hạ BH⊥CE (H thuộc CE) \(\Rightarrow\)BH là phân giác \(\widehat{CBE}\).
\(\widehat{EBC}=2\widehat{HBC}=2\left(90^0-\widehat{ECB}\right)=2\widehat{ECD}\)