a) (a+b)^3 + (a+b)^3
b) 9x^2+6xy+y^2
c) 4x^2-25
đề bài là phân tích đa thức thành nhân tử nhé các bạn giải giúp mình nhé cảm ơn mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
\(b,9x^2+6xy+y^2\)
\(=\left(3x\right)^2+2.3x.y+y^2\)
\(=\left(3x+y\right)^2\)
\(c,4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x-5\right)\left(2x+5\right)\)
1.
a) \(\left(-2x^3\right)\)\(\left(x^2+5x-\frac{1}{2}\right)\) = \(-2x^5\)\(-10x^4\) \(+x^3\)
b) (\(6x^3-7x^2\)\(-x+2\))\(:\left(2x+1\right)\)=\(3x^2-5x+2\)
2.
a) 9x(3x-y) + 3y (y-3x)=9x(3x-y)-3y(3x-y)
= (9x-3y)(3x-y)
= 3(3x-y)(3x-y)
= 3(3x-y)^2
b) \(x^3-3x^2\)\(-9x+27\)= \(\left(x^3-3x^2\right)\)\(-\left(9x-27\right)\)
= \(x^2\left(x-3\right)\)\(-9\left(x-3\right)\)
= \(\left(x^2-9\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)^2\)
Bài 1 ) a ) \(\left(-2x^3\right)\left(x^2+5x-\frac{1}{2}\right)\)
\(=-2x^5-10x^4+x^3\)
b ) \(\left(6x^3-7x^2+x+2\right):\left(2x+1\right)\)
\(=3x^2-5x+2\)
2 ) a ) \(9x\left(3x-y\right)+3y\left(y-3x\right)\)
\(=9x\left(3x-y\right)-3y\left(3x-y\right)\)
\(=\left(3x-y\right)\left(9x-3y\right)\)
\(=3\left(3x-y\right)\left(x-y\right)\)
b ) \(x^3-3x^2-9x+27\)
\(=\left(x^3-3x^2\right)-\left(9x-27\right)\)
\(=x^2\left(x-3\right)-9\left(x-3\right)\)
\(=\left(x^2-9\right)\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x-3\right)\)
a) \(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
Phân tích đa thức thành nhân tử
a)4x( x - 3 ) - 6 ( x - 3)
b) x2 ( x - 5 ) + x( 5 - x )
mình cảm ơn nhé
a) \(4x\left(x-3\right)-6\left(x-3\right)=2\left(x-3\right)\left(2x-3\right)\)
b) \(x^2\left(x-5\right)+x\left(5-x\right)=x^2\left(x-5\right)-x\left(x-5\right)=x\left(x-5\right)\left(x-1\right)\)
Bài 1 :
a) Ta có : x2 - 9x + 8 = x2 - x - 8x + 8 = x(x - 1) - 8(x - 1) = (x - 8)(x - 1)
b) Ta có : x2 + 6x + 8 = x2 + 6x + 9 - 1 = (x + 3)2 - 1 = (x + 3 - 1)(x + 3 + 1) = (x + 2)(x + 4)
Bài 2 :
b) 4x2 - 25 = 0
=> 4x2 = 25
=> (2x)2 = 52
=> 2x = -5;5
=> x = -5/2 ; 5/2
b) = x^2 + 2.x.3 + 3^2 - 1
=(x + 3)^2 - 1
=(x + 3 + 1)(x + 3 - 1)
=(x + 4)(x + 2)
Phần a mk nghĩ bn nên tự lm.
1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)
\(=3xya^2+3xyb^2+abx^2+ab9y^2\)
\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)
\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)
\(=\left(3ya+xb\right)\left(3yb+ax\right)\)
2.Check lại đề hộ mình nha:((
Câu 2 nên sủa lại đề nha
2. xy(a2+2b2)+ab(2x2+y2)
=xya2+xy2b2+ab2x2+aby2
=(xya2+aby2)+(xy2b2+ab2x2)
=ay(ax+by)+2bx(by+ax)
=(ax+by(ay+2bx)
a) \(\left(a+b\right)^3+\left(a+b\right)^3\)
\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)
\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)
\(=2\left(a+b\right)\)
b) \(9x^2+6xy+y^2\)
\(=\left(3x+y\right)^2\)
\(=\left(3x+y\right)\left(3x+y\right)\)
c) \(4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x+5\right)\left(2x-5\right)\)