Tìm số tự nhiên có 3 chữ số , biết rằng số đó chia hết cho 45 và khi viết nó ngược lại được 1 số mới cũng gồm 3 chữ số và chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
là số 585 nha bạn
Vì theo đề bài ta suy được chữ số đầu và chữ số cuối giống nhau và khác 0 nên bằng 5 mà chỉ có số 585 (thử lần lượt) thỏa mãn nên số cần tìm sẽ là 585
Gọi số có ba chữ số cần tìm là: \(\overline{abc}\) (a khác 0)
Theo đề ta có, số đó chia hết cho 45: \(\overline{abc}⋮45\) hay \(\overline{abc}⋮5\) và \(\overline{abc}⋮9\)
Để \(\overline{abc}⋮5\) thì c là 0 hoặc 5 (1)
Để \(\overline{abc}⋮9\) thì a+b+c chia hết cho 9 (2)
Lại có: Khi viết thứ tự ngược lại ta được số có ba chữ số vẫn chia hết cho 45 nên ta có: \(\overline{cba}⋮45\) hay \(\overline{cba}⋮5\) và \(\overline{cba}⋮9\) (c khác 0)
Để \(\overline{cba}⋮5\) thì a là 0 hoặc 5 (3)
Để \(\overline{cba}⋮9\) thì c+b+a chia hết cho 9 (4)
Từ (1),(2),(3) và (4) ta có: \(\overline{5b5}\)
Mà 5+b+5 chia hết cho 9 nên b là 8.
Vậy số cần tìm là 585
Số có ba chữ số có dạng : \(\overline{abc}\)
Vì số đó chia hết cho 45 nên số đó chia hết cho 5 => c =0; 5
Vì ta có thể viết số đó theo thứ tự ngược lại nên c = 0 loại => c = 5
Số đó có dạng: \(\overline{ab5}\)
Khi viết số đó theo thứ tự ngược lại ta được số mới là: \(\overline{5ba}\)
Vì số đó viết theo thứ tự ngược lại ⋮ 45 nên số ngược lại ⋮5
nên a = 0; a = 5
a = 0 ( loại ) => a = 5
Vì số đó chia hết cho 45 nên số đó chia hết cho 9
ta có : 5 + b + 5 ⋮ 9 ⇒ b + 10 ⋮ 9, mà b ≤ 9 ⇒ b = 8
vậy số thỏa mãn đề bài là : 585
\(45=5.9;\left(5,9\right)=1\)nên số đó chia hết cho \(45\)thì ta tìm sao cho số đó chia hết cho \(5\)và \(9\).
Số đó chia hết cho \(5\)nên chữ số tận cùng của số đó là \(5\)(vì nếu tận cùng là \(0\)thì không viết ngược lại được).
Số đó có dạng: \(\overline{ab5}\)\(\left(0\le a,b\le9;a,b\inℕ;a\ne0\right)\).
Số đó viết theo thứ tự ngược lại là: \(\overline{5ba}\).
Có: \(\overline{ab5}-\overline{5ba}=100a+10b+5-\left(500+10b+a\right)=99a-495=297\)
\(\Leftrightarrow99a=792\Leftrightarrow a=8\)(thỏa).
Chia hết cho \(9\)nên: \(a+b+5⋮9\Rightarrow8+b+5=13+b⋮9\Rightarrow b=5\)(thỏa).
Vậy số cần tìm là \(855\).
Gọi số cần tìm là abc , số viết ngược lại là cba . Ta có :
\(abc-cba=297\)
\(\Rightarrow100a+10b+c-\left(100c+10b+a\right)=297\)
\(\Rightarrow99a-99c=297\)
\(\Rightarrow a-c=297:99=3\)
Vì abc chia hết cho 45 => abc chia hết cho 5 và 9 => c = 5
\(\Rightarrow a=3+c=3+5=8\)
Xét số 8b5 chia hết cho 9
\(\Rightarrow8+b+5⋮9\)
\(\Rightarrow13+b⋮9\)
\(\Rightarrow b=5\)
Vậy số cần tìm là 855
Gọi số cần tìm là \(\overline{abc}\)
Ta có: \(\overline{abc}-\overline{cba}=297\)
=>100a + 10b + c - 100c - 10b - a
=>99a - 99c = 297
\(\Rightarrow a-c.99=297\)
=> a - c = 3
Số chia hết cho 45 < 1000 = {45;90;...;360;...;855;...}
1/ Ta có \(\overline{20a20a20a}=\overline{20a}.1001001\)
Do \(\left(1001001;7\right)=1\) nên để \(\overline{20a20a20a}⋮7\) thì \(\overline{20a}⋮7\)
\(\Leftrightarrow\left(200+a\right)⋮7\)
Do a là chữ số nên a = 3.
2. Gọi số cần tìm là \(\overline{abc}\)
Theo bài ra ta có \(\overline{abc}⋮45\) và \(\overline{abc}-\overline{cba}=297\)
Do \(\overline{abc}⋮45\) nên \(\overline{abc}⋮5;\overline{abc}⋮9\)
TH1: c = 0
Ta có \(\overline{ab0}-\overline{ba}=297\Leftrightarrow100a+10b-10b-a=297\)
\(\Leftrightarrow99a=297\Leftrightarrow a=3\)
Khi đó \(\overline{3b0}⋮9\Rightarrow\left(3+b\right)⋮9\Rightarrow b=6\)
Số cần tìm là 360.
TH2: c = 5
Ta có \(\overline{ab5}-\overline{5ba}=297\Leftrightarrow100a+10b+5-500-10b-a=297\)
\(\Leftrightarrow99a-495=297\Leftrightarrow a=8\)
Khi đó \(\overline{8b5}⋮9\Rightarrow\left(13+b\right)⋮9\Rightarrow b=5\)
Số cần tìm là 855.
Vậy ta tìm được hai số thỏa mãn là 360 và 855.
2)Gọi số cần tìm là: abc (0<a,b,c<9 hoặc 0=b,c=9)
Ta có:Vì (a+c):2=b nên b.2=a+c
Để abc chia hết cho 9 thì (a+b+c) chia hết cho 9
=>(a+b+c) chia hết cho 9
=>(b.2+b) chia hết cho 9
=>3.b chia hết cho 9
Vì 0<b<9 hoặc 0=b=9 và 3.b chia hết cho 9 nên b=0;3;6:9
Thay b vào đẳng thức 2.b=a+c thì a+c=0;6;12;18
vì abc chia hết cho 5 nếu c=0 hoạc 5
Nếu c=0 thì a=6( vì 0<a<9 hoặc a=9)
Nếu c=5 thì a=1;7(vì 0<a<9 hoặc a=9)
Vậy abc=630;135;765
3)Gọi số cần tìm là :abc(0< a;c;b<9 hoạc 0=a;b;c=9 )
abc-cba=297
Vì abc chia hết cho 45 nên abc chia hết cho 5 và 9
vì abc chia hết cho 5 nên c=0 hoặc 5
nếu c=0 thì ta được ab0 để ab0-0ba=297 thì a=3
Vì a=3 và a>b nên b=1 hoặc 2
Nếu b=1 hoặc 2 thì abc không chia hết cho 9 nên c không thể là 0
=>c=5 ta được ab5
Để ab5-5ba=297 thì a=8 thay 8=a ta được 8b5
Vì abc chia hết cho 9 nên (8+b+5) chia hết cho 9
=> (13+b) chia hết cho 9
vì 0<b<9 hoặc 0=b=9 và(13+b) chia hết cho 9 nên b=5
Vậy abc=855.
(Bạn nhớ cho mình 2 ****! Vì lần trước mình cũng giải 1 bài cho bạn mà0
Gọi số tự nhiên có 3 chữ số đó là \(\overline{abc}\). Khi viết nó ngược lại ta được số \(\overline{cba}\)\(\left(0\le b\le9,0< a;c< 10,a;b;c\in N\right)\)
- Vì \(45=9.5\Rightarrow\overline{abc}⋮9;5,\overline{cba}⋮9;5\)
Mà \(0< a;c< 10\Rightarrow a=c=5\)
Thay \(a=c=5\)vào, ta được :
\(\overline{5b5}⋮5;9\)
Xét số \(\overline{5b5}⋮9\)khi \(\left(5+b+5\right)⋮9\)
hay\(\left(10+b\right)⋮9\)
\(\Rightarrow b=8\)
Thay \(b=8\)vào, ta được:
\(\overline{5b5}=585\)
Thử lại: \(585:45=13\)( hợp lý )
Vậy số tự nhiên có ba chữ số đó là \(585.\)
Để số đó chia hết cho 45 => số đó phải chia hết cho 5 và 9
Gọi số cần tìm là abc ( a > 0 )
Để abc chia hết cho 5 => c = 5 ( vì khi viết ngược lại a ko thế bằng 0 )
Vì khi viết nó ngước lại dc số mới vẫn chia hết cho 45 ( tức là chia hết cho 5 và 9 ) => a = 5 ( vì a ko thế bằng 0 )
Để 5b5 chia hết cho 9 => ( 5 + b + 5 ) chia hết cho 9 => b = 8
Vậy ta có số cần tìm là 585
Mk chúc bn hk tốt nha.
Nếu có j sai thì bảo mk ha