Cho biểu thức M =
2011 - 4022 : (x - 2009 ) phần 2011 x 2012 x 2013 với x là số tự nhiên .
Giá trị nhỏ nhất của M là bao nhiêu ?
Các bạn giúp mình giải bài này nhé !!!!! Mình cần gấp ....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2011-\frac{6033}{x-2009}}{2009.7598+3294}.\)
a/ M là một phân thức có biểu thức ở mẫu số có giá trị không đổi (Là một số cụ thể, không thay đổi) Do đó M đạt giá trị nhỏ nhất khi biểu thức ở tử số đạt giá trị nhỏ nhất. Biểu thức ở tử là một hiệu, số bị trừ là 2011 không đổi, Hiệu nhỏ nhất khi số Trừ lớn nhất. Số trừ ở đây là một phân số, tử số là 6033 không đổi do đó số trừ lớn nhất khi mẫu thứ dương và bé nhất, ta chỉ xét x là số tự nhiên x- 2009 =1 là bé nhất ,
vậy x = 2010
b/ Khi x = 2010 thì M đạt giá tị nhỏ nhất, giá tị nhỏ nhất bằng Mmin =... Thay x = 2010 vào để tính nhé. Mình buồn ngủ lắm rồi.
1: \(C=2010\cdot2012\)
\(C=\left(2011-1\right)\left(2011+1\right)\)
\(C=2011\left(2011+1\right)-\left(2011+1\right)\)
\(C=2011\cdot2011+2011-2011-1=2011\cdot2011-1\)
Mà \(D=2011\cdot2011\)
\(\Rightarrow C< D\)
2: Chia 1 số cho 60 thì dư 37.Vậy chia số đó cho 15 thì được số dư là 7
3: Chú thích: giá trị nhỏ nhất=GTNN
Để M có GTNN
thì \(2012-\frac{2011}{2012-x}\) có GTNN
Nên \(\frac{2011}{2012-x}\)có GTLN
nên 2012-x>0 và x thuộc N
Suy ra: 2012-x=1
Suy ra: x=2011
Vậy, M có GTNN là 2011 khi x=2011
Ta có: \(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+4}{2011}+\frac{x+5}{2010}+\frac{x+6}{2009}\)
\(\Rightarrow\frac{x+1}{2014}+1+\frac{x+2}{2013}+1+\frac{x+3}{2012}+1=\frac{x+4}{2011}+1+\frac{x+5}{2010}+1+\frac{x+6}{2009}+1\)
\(\Rightarrow\frac{2015+x}{2014}+\frac{2015+x}{2013}+\frac{2015+x}{2012}=\frac{2015+x}{2011}+\frac{2015+x}{2010}+\frac{2015+x}{2009}\)
\(\Rightarrow\left(2015+x\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
=> 2015 + x = 0
=> x = -2015
ta có: \(\frac{2011-4022:\left(x-2009\right)}{2011\times2012\times2013}\)
\(M=\frac{2011-2\times2011:\left(x-2009\right)}{2011\times2012\times2013}\)
\(=\frac{2011\times\left(1-2:\left(x-2009\right)\right)}{2011\times2012\times2013}\)
\(=\frac{1-2:\left(x-2009\right)}{2012\times2013}\ge0\)
Để M có giá trị nhỏ nhất
\(\Rightarrow\frac{1-2:\left(x-2009\right)}{2012\times2013}=0\)
=> 1 - 2: (X-2009) = 0 : ( 2012 x 2013)
1-2:(X-2009) = 0
2: (X-2009) = 1
X-2009 = 2
X = 2 +2009
X=2011
KL: Giá trí nhỏ nhất của M là 0 tại X =2011