Từ điểm M nằm ngoài đường tròn (O), vẽ tiếp tuyến MA đến (O) (với A là tiếp điểm) và vẽ cát tuyến MBC sao cho MB < MC và tia MC nằm giữa hai tia MA, MO. Gọi H là hình chiếu vuông góc của điểm A trên đường thẳng OM, gọi E là trung điểm của đoạn thẳng BC.
1. Chứng minh rằng O, E, A, M cùng thuộc một đường tròn
2. Chứng minh rằng MA2 = MB.MC
3. Chứng minh tứ giác BCOM nội tiếp và HA là tia phân giác của góc BHC
4. Đoạn thẳng OA cắt đường tròn (O) tại điểm I.
Chứng minh rằng S ΔBIM/S ΔBHI = BM/BH
giúp mk vs ạ mk đang cần gấp
IK² = IO² - R²
IH² = (MH/2)²= (MA²/2MO)² = (MO² - R²)²/(2MO)²
∆MIK cân <=> IM = IK <=> IH = IK
<=> (MO² - R²)² = 4MO²(IO² - R²)
<=> (MO² + R²)² = (2.MO.IO)²
<=> MO² + R² = 2MO.IO
<=> R² = MO(2IO - MO) = MO.HO đúng