Cho S là hình vuông với cạnh là 100, và L là đường gấp khúc không tự cắt tạo thành từ các đoạn thẳng A0A1, A1A2…,An-1An với A0#An. Giả sử với mỗi điểm P trên biên của S đều có một điểm thuộc L cách P không quá ½. Hãy chứng minh: Tồn tại 2 điểm X và Y thuộc L sao cho khoảng cách giữa X và Y không vượt qúa 1, và độ dài phần đường gấp khúc L nằm giữa X và Y không nhỏ hơn 198.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi P là hình chiếu của N xuống BK
Khi quay tứ giác ANPB quanh trục BC ta được khối trụ có thể tích V 1 = πAB 2 . BP = 2 a 3 π 3
Lại có B P = 2 3 a ; N P = a suy ra P K = N P 2 B P = 3 a 2
Khi quay tam giác NKP quanh trục BC ta được khối nón có thể tích do đó V = V 1 + V 2 = 7 6 πa 3
Phương pháp:
Công thức tính thể tích của khối trụ có bán kính đáy R và chiều cao h: V = π R 2 h
Công thức tính thể tích của khối nón có bán kính đáy R và chiều cao h: V = 1 3 π R 2 h
Cách giải:
Khi quay tứ giác ANKB quanh trục BK ta được hình trụ có bán kính đáy AB, chiều cao AN và hình nón có bán kính đáy AB, chiều cao K O = B K − A N
a: ΔHEB vuông tại H có góc HBE=45 độ
nên ΔHEB vuông cân tại H
b: KH//AB
=>gó KHE=góc HEB=45 độ
=>ΔKHM vuôngtại K
=>KH=KM
ΔCKH vuông tại K có góc C=45 độ
nên ΔCKH vuông cân tại K
=>KC=KH=KM
=>K là trung điểm của MC