\((\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}).x=\frac{1}{9}+\frac{2}{8}+\frac{3}{7}+...+\frac{8}{2}+\frac{9}{1}\)
Ai bt làm thì giúp mk với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\frac{5}{8}\)
= \(\frac{8}{24}-\frac{15}{24}\)
= \(\frac{-7}{24}\)
b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)
= \(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)+ \(\frac{1}{13}\)
= \(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)
= \(\frac{1}{8}+\frac{1}{13}\)
= \(\frac{13}{104}+\frac{8}{104}\)
= \(\frac{23}{104}\)
c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)
= \(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)
= \(16:\left(\frac{-8}{9}\right)\)
= -18
\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10-1}{1}+\frac{10-2}{2}+...+\frac{10-9}{9}\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10}{1}-1+...+\frac{10}{9}-1\)
=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10-9+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)= \(\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)
=>\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
=> \(x=10\)
b) Tương tự câu a
Ta có :
\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(=\)\(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(=\)\(\frac{2}{7}-\frac{1}{\frac{7}{2}}\)
\(=\)\(\frac{2}{7}-\frac{2}{7}\)
\(=\)\(0\)
Chúc bạn học tốt ~
\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}:\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(=\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}:\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(=\frac{2}{7}:\frac{1}{\frac{7}{2}}=\frac{2}{7}:\frac{2}{7}=1\)
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
Đặt \(A=\frac{1}{9}+\frac{2}{8}+...+\frac{8}{2}+\frac{9}{1}\)
\(\Rightarrow A=\frac{1}{9}+\frac{2}{8}+\frac{3}{7}+...+\frac{8}{2}+\left(1+1+...+1\right)\left(9cs1\right)\)
\(\Rightarrow A=\left(\frac{1}{9}+1\right)+\left(\frac{2}{8}+1\right)+...+\left(\frac{8}{2}+1\right)+1\)
\(\Rightarrow A=\frac{10}{9}+\frac{10}{8}+...+\frac{10}{2}+\frac{10}{10}\)
\(\Rightarrow A=10.\left(\frac{1}{2}+...+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
Mà \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{10}\right).x=A\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).x=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).10\)
\(\Rightarrow x=10\)
Vậy \(x=10\)