Ba đội cùng làm chung một công việc, sau 4 ngày đội 3 điều đi làm việc khác, hai đội còn lại tiếp tục làm thêm 12 ngày nữa thì xong công việc. Nếu sau 6 ngày làm chung đội 3 mới được điều đi thì cần thêm 9 ngày nữa để 2 đội còn lại hoàn thành công việc. Hỏi nếu chỉ đội 1 và đội 2 cùng làm thì xong bao lâu hoàn thành công việc?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y là số ngày đội 1 ; đội 2 làm xong công việc \((x;y>12)\)
Trong 1 ngày đội 1 làm được \(\frac{1}{x}\)công việc
Trong 1 ngày đội 2 làm được \(\frac{1}{y}\)công việc
Trong 1 ngày cả hai đội làm được \(\frac{1}{12}\)công việc
Theo bài ra,ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}(1)\)
Khi cả hai đội làm chung 8 ngày,cả hai đội làm được : \(\frac{8}{12}=\frac{2}{3}\)công việc
Số công việc còn lại để đội 2 làm nốt là : \(1-\frac{2}{3}=\frac{1}{3}\)công việc
Đội 2 làm năng suất gấp đôi : \(2\cdot\frac{1}{y}=\frac{2}{y}\)
Theo bài ra,ta có : \(7\cdot\frac{2}{y}=\frac{1}{3}\)
Từ 1 và 2 bạn tự suy ra nhé
Chúc bạn học tốt
Gọi (ngày) là thời gian đội I làm một mình xong công việc với năng suất ban đầu ,
(ngày) là thời gian đội II làm một mình xong công việc với năng suất ban đầu
Trong 1 ngày đội I làm được (công việc),
đội II làm được (công việc)
Hai đội xây dựng làm chung theo dự định trong 12 ngày xong nên ta có:
(1)
Cả hai đội làm chung 8 ngày thì được (công việc)
Số công việc còn lại của đội II làm là: (công việc)
Năng suất của đội II tăng gấp 2 lần nên 1 ngày làm được công việc
Khi năng suất tăng họ làm 3,5 ngày thì hoàn thành phần công việc còn lại nên ta có:
(2)
Thay vào (1) suy ra
Vậy nếu làm theo dự định thời gian đội I làm một mình xong công việc là ngày, thời gian đội II làm một mình xong công việc là ngày.
Gọi x,y theo thứ tư là thời gian mà mỗi đội làm một mình thì hoàn thành công việc.
Với năng suất ban đầu: x,y > 0 và tính theo đơn vị ngày.
Trong 1 ngày đội I làm được 1/x công việc. 1 ngày đội II làm được 1/y công việc. 1 ngày cả 2 đội làm được 1/12 công việc.
Ta có phương trình: 1/x + 1/y = 1/12 (công việc)( 1)
Trong 8 ngày cả hai đội làm được 8. 1/12 = 2/3 (công việc).
Sau khi một đội nghỉ, năng suất của đội II là 2/y. Họ phải làm trong 3,5 ngày thì xong công việc nên ta có phương trình 1/3 : 2/y = 7/2
(2)
Ta có hệ:Giải hệ1,2 này, ta được x = 28 (ngày); y = 21(ngày) Chú ý: Ta có thể đặt hệ
Gọi thời gian đội I làm một mình để hoàn thành công việc là x ( đơn vị ngày, x > 12 )
Gọi thời gian đội II làm một mình để hoàn thành công việc là y ( đơn vị ngày, y > 12 )
Mỗi ngày đội I làm được \(\dfrac{1}{x}\) ( công việc )
Mỗi ngày đội II làm được \(\dfrac{1}{y}\) ( công việc )
8 ngày làm được \(\dfrac{2}{3}\) ( công việc )
Năng suất mới của đội II là \(\dfrac{2}{y}\) ( công việc )
theo đề bài ta có hệ pt :
1/x + 1/y = 1/12 và 2/3 + 2/y . 7/2 = 1
Giải hệ pt ta đc x = 28 , y = 21 (tm )
kết luận
Gọi A là số công việc đội 1 và đội 2 làm được trong 1 ngày.
Gọi B là số công việc đội 3 làm được trong 1 ngày.
Cả 3 đội trong 1 ngày làm được A + B công việc
Theo bài ra ta có hệ phương trình
4 * (A + B) + 12 * A = 1 hay 4A +4B + 12A = 1 hay 16A +4B = 1 (1)
6 * (A + B) + 9 * A = 1 hay 6A + 6B + 9A =1 hay 15A + 6B = 1 (2)
Nhân (1) với 3, nhân (2) với 2 ta có hệ
48A + 12B = 3 (3)
30A + 12B = 2 (4)
Trừ (3) cho (4) ta có
18A = 1, suy ra A = 1/18
Thời gian chỉ đội 1 và đội 2 cùng làm hoàn thành công việc là
1 : 1/18 = 18 ngày
Vậy chỉ đội 1 và đội 2 cùng làm thì sau 18 ngày sẽ hoàn thành công việc.