cho biểu thức A=1/2+1/2^2 +1/2^3 +1/2^4+........+1/2^100
chứng tỏ A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)
B = 31 + 32 + 33 + .... + 399 + 3100
3B = 3(31 + 32 + 33 + ..... + 399 + 3100)
3B = 32 + 33 + 34 +...... + 3100 + 3101
3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)
2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)
2B = 0 + 0 + 0 + ..... +0 + 3101 - 1
2B = 3101 - 1
B = (3101 - 1) : 2
\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\left(đpcm\right)\)
ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
Ta có:3.A=1+1/3+1/3^2+...+1/3^97 +1/3^98
=>3.A - A=(1+1/3+1/3^2+...+1/3^98 + 1/3^99)-(1/3+1/3^2 +1/3^3+...+1/3^98+1/3^99)
=>2.A=1-1/3^99
=>A=1/2 -1/3^99.1/2 <1/2
Vậy ... T I C K cho mình với nha
Bạn xem lời giải của mình nhé:
Giải:
A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)
\(A< 1\)(2)
Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)
Chúc bạn học tốt!
A= \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)+ \(\frac{1}{2^{100}}\).
2A= 1+ \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)+ \(\frac{1}{2^{101}}\).
2A- A=( 1+ \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)+ \(\frac{1}{2^{101}}\))-( \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)+ \(\frac{1}{2^{100}}\)).
A= 1- \(\frac{1}{2^{100}}\)< 1.
=> A< 1.
Vậy A< 1.
Ta có
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow2A=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+...+\frac{2}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
\(\Rightarrow A< 1\)
Vậy A<1 (đpcm)