chung minh rang voi moi so nguyen duong n thi
10n + 18n -1 chia het cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
Ta có: 3n+2 - 2n+4 + 3n + 2n
= 3n . 32 - 2n . 24 + 3n + 2n
= 3n . 9 - 2n . 16 + 3n + 2n
= (3n . 9 + 3n) - (2n . 16 - 2n)
= 3n . (9 + 1) - 2n . (16 - 1)
= 3n . 10 - 2n . 15
Do n nguyên dương nên 3n chia hết cho 3, 2n chia hết cho 2
=> 3n . 10 chia hết cho 30, 2n . 15 chia hết cho 30
=> 3n . 10 - 2n . 15 chia hết cho 30
=> đpcm
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
n3-n=n(n2-1)=n(n-1)(n+1)
Do n;n+1;n-1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết chio 2 và 1 số chia hết cho 3
=>n(n-1)(n+1) chia hết cho 6
\(n^3-n=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)=\left(n-1\right).n.\left(n+1\right)\)
Ta thấy n-1;n;n+1 là ba số tự nhiên liên tiếp
Mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
Nên \(n^3-n\) luôn chia hết cho 6.
Tham khảo, chúc bạn học thật giỏi!
\(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\)
Dễ thấy: \(n-1;n;n+1\) là 3 số tự nhiên liên tiếp thì chia hết cho 6
Ta có đpcm
C= 10^n +18n ‐ 1=10^n‐1+18n
=99..9﴾n chữ số 9﴿+18n =9﴾11...1﴾n chữ số 9﴿+2n﴿
Xét 11...1﴾n chữ số 9﴿+2n=11...1‐ n+3n
Dễ thấy tổng các chữ số của 11..1﴾n chữ số 1﴿ là n
=>11...1‐ n chia hết cho 3
=>11...1‐ n+3n chia hết cho 3
=>10^n +18n ‐ 1 chia het cho 27
ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)
10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1)
Vậy ...
T I C K cho mình nha
toán lớp 7 à sao mà khó vậy