Cho hình chữ nhật ABCD có AB = 4cm, AD = 2cm. Gọi M là trung điểm của CD, N là
trung điểm của BM. Tính độ dài đoạn thẳng DN?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ NC = 3 NA => NC = 3/4 CA
Kẻ NH _|_CD
=> NH // AD
Theo Ta-let có
\(\frac{NH}{AD}=\frac{CN}{CA}=\frac{\frac{3}{4}CA}{CA}=\frac{3}{4}\)
\(\Rightarrow NH=\frac{3AD}{4}=\frac{3.4}{4}=3\)
Theo Pytago có \(AD^2+DC^2=AC^2\)
\(\Leftrightarrow4^2+8^2=AC^2\)
\(\Leftrightarrow AC^2=80\)
\(\Leftrightarrow AC=4\sqrt{5}\)
\(\Rightarrow NC=\frac{3}{4}AC=\frac{3}{4}.4\sqrt{5}=3\sqrt{5}\)
Áp dụng định lí Pytago \(NH^2+HC^2=NC^2\)
\(\Leftrightarrow3^2+HC^2=45\)
\(\Leftrightarrow HC^2=36\)
\(\Leftrightarrow HC=6\)
CÓ \(MC=\frac{CD}{2}=\frac{8}{2}=4\)
\(\Rightarrow HM=HC-CM=6-4=2\)
Áp dụng Pytago
\(HN^2+HM^2=NM^2\)
\(\Leftrightarrow3^2+2^2=NM^2\)
\(\Leftrightarrow MN^2=13\)
\(\Leftrightarrow MN=\sqrt{13}\)
Vẽ \(NP\perp AM\) tại P
\(\hept{\begin{cases}\text{có }AB=a\Rightarrow AM=\sqrt{AB^2+BN^2}=\frac{\sqrt{5}}{2}a\\\text{từ }CM:AM=AD=a\end{cases}}\Rightarrow MP=\frac{-2+\sqrt{5}}{2}a\)
Đặt ND = NP, ta có:
\(x^2+MP^2=MC^2+CN^2\)
\(x^2+\left(\frac{-2+\sqrt{5}}{2}\right)^2a^2=\frac{a^2}{4}+\left(a-x\right)^2\)
\(\Leftrightarrow x^2+\frac{9-4\sqrt{5}}{4}a^2=\frac{a^2}{4}+a^2-2ax+x^2\)
\(\Leftrightarrow a^2\left(\frac{9-4\sqrt{5}}{4}-\frac{1}{4}-1\right)=-2ax\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)a^2=-2ax\)
\(\Leftrightarrow x=\frac{\sqrt{5}-1}{2}a\Rightarrow CN=\frac{3-\sqrt{5}}{2}a\)
\(\Rightarrow MN=\sqrt{CN^2+MC^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{4}a^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{2}}a\)
P/s: Ko chắc
a. Vì ABCD là hcn nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AM=CN=BM=DN\)
Mà ABCD là hcn nên AB//CD hay AM//CN
Vậy AMCN là hbh
b. Vì AM=DN và AM//DN(AB//CD) và \(\widehat{MAD}=90^0\) nên AMND là hcn
Mà O là trung điểm MD nên O là trung điểm AN
Vậy A,O,N thẳng hàng
c. Vì BM=CN và BM//CN(AB//CD) và \(\widehat{MBC}=90^0\) nên BMNC là hcn
Mà I là trung điểm MC nên I là trung điểm BN hay MC giao BN tại I
Mà BMNC là hcn nên \(BN=MN\Rightarrow MI=IN\Rightarrow I\in\) trung trực MN
Mà AMND là hcn nên \(AN=MD\Rightarrow OM=ON\Rightarrow O\in\) trung trực MN
Vậy OI là trung trực MN hay O đx I qua MN
a: AD=căn 10^2-8^2=6cm
b: Xét tứ giác BMDN có
BM//DN
BM=DN
=>BMDN là hbh
=>O là trung điểm của MN
từ điểm N hạ \(ON\perp DC\)
ABCD là hình chữ nhật=>\(\left\{{}\begin{matrix}AB=DC=4cm\\AD=BC=2cm\end{matrix}\right.\)
mà \(ABCD\) là hình chữ nhật \(=>BC\perp CD=>BC//ON\)
mà \(NM=NB=>ON\) là đường trung bình \(\Delta MBC\)
\(=>ON=\dfrac{1}{2}BC=\dfrac{1}{2}.2=1cm\)
do ON là đường trung bình \(=>MO=OC=\dfrac{1}{2}MC\)
mà \(MC=DM=\dfrac{1}{2}DC=\dfrac{1}{2}.4=2cm\)
\(=>MO=\dfrac{1}{2}MC=\dfrac{1}{2}.2=1cm\)
\(=>OD=DM+OM=1+2=3cm\)
xét \(\Delta DNO\) vuông tại O\(=>DN=\sqrt{ON^2+DO^2}=\sqrt{3^2+1^2}=\sqrt{10}cm\)
cảm ơn cậu